
Count 
Down 

Six Kids Vie for Glory | 
at the World's 
TOUGHEST 
MATH 
C O M P E T I T I O N 

S T E V E O L S O N 
a u t h o r o f M A P P I N G HUMAN HISTORY, N a t i o n a l B o o k A w a r d f i n a l i s t 



$Z4- 0 0 

EA C H S U M M E R S I X M A T H W H I Z Z E S 

selected f r o m nearly a hal f m i l l i o n 
Amer ican teens compete against the 

w o r l d ' s best p r o b l e m solvers at the Interna
t ional Mathematical O l y m p i a d . Steve Olson, 
whose Mapping Human History was a N a 
t ional Book A w a r d finalist, fo l lows the 
members of a U.S. team f r o m their intense 
t ryouts to the Olympiad 's n a i l - b i t i n g final 
rounds to discover not only w h a t drives 
these extraordinary kids but w h a t makes 
them both unique and typica l . I n the 
process he provides fascinating insights into 
the creative process, h u m a n intelligence and 
learning, and the nature of genius. 

Br i l l i ant , b u t defying al l the math-nerd 
stereotypes, these athletes of the m i n d 
w a n t to excel at whatever piques their cu
riosity, and they are curious about almost 
everything — music, games, pol i t ics , sports, 
l i terature. One team member is ardent 
about water po lo and creative w r i t i n g . A n 
other plays f o u r musical instruments . For 
fun and entertainment d u r i n g breaks, the 
Olympians invent games of m i n d - b o g g l i n g 
di f f i cul ty . T h o u g h driven by the g lory of 
w i n n i n g this u l t imate m a t h contest, i n many 
ways these kids are n o t so dif ferent f r o m 
other teenagers, finding pure joy in indulging 
their personal passions. 

Beyond the O l y m p i a d , Steve Olson sheds 
l ight o n such questions as w h y Americans 
feel so queasy about m a t h , w h y so few girls 
compete in the subject, and whether or not 
talent is innate. Inside the cavernous g y m 
where the compet i t ion takes place, Count 
Down reveals a fascinating subculture and 
its engaging, dr iven inhabitants . 
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i n t r o d u c t i o n 

O n July 4, 1974, a bus carrying eight U.S. high school students 
wound through the narrow medieval streets of Erfurt, East Ger
many. The students were all a bit nervous. In those days of 
heightened Cold War tensions, few Americans ventured beyond 
the Iron Curtain. Just that morning, after an all-night flight from 
New York City, the students had endured a brusque round of 
questioning by the East German border police. As they stepped 
from the bus in the center of Erfurt, beneath the spires of the ca
thedral where Martin Luther preached his first sermons, they felt 
both isolated and highly visible. 

They were nervous for another reason. These high school ju
niors and seniors were the first team from the United States ever 
to compete in an International Mathematical Olympiad. In 1974 
the Olympiad was already fifteen years old; the first one had been 
held in 1959 in Bucharest, Romania. But throughout the 1960s 
the United States had been reluctant to field an Olympiad team. 
The Olympiad is a competition for individuals in which gold, sil
ver, and bronze medals are awarded. But unofficially the teams 
always have added their individual scores and compared them
selves country against country. In this informal contest the 
Olympiad had been dominated by teams from the Soviet Union 
and eastern Europe. Even as more teams from western Europe 
began to compete — Finland in 1965 (finishing last), Great Brit
ain, Sweden, Italy, and France (also finishing last) in 1967 — the 
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U.S. mathematics community had no desire to pit America's best 
high school students against the world's best. " A lot of people 
were dead set against it," says Murray Klamkin, a renowned 
mathematical problem writer who coached the U.S. team from 
1975 to 1984. "They thought a U.S. team would be crushed by 
all those Communist countries." 

In 1971 the mathematician Nura Turner, from the State Uni
versity of New York at Albany, wrote an article that began to 
change people's minds. She pointed out that several state-level 
competitions, established mostly since the 1950s, had laid the 
groundwork for American participation at the international 
level. She admitted that a U.S. team might be humiliated in its ini
tial attempts but argued that Americans were tough enough to 
bounce back. "We certainly must possess here in the USA the 
strength of character," she wrote, "to face defeat and the capabil
ity and courage to then plunge into systematic hard training to 
compete again with the desire to strive for a better showing." 

In 1974 the major U.S. mathematical organizations finally 
agreed to send a team. Two years earlier the Mathematical Asso
ciation of America had instituted a national exam designed to 
identify the best high school mathematicians in the country. In 
the spring of 1974 the association named the top eight finishers 
on the exam as the members of the U.S. Olympiad team. 

Eric Lander, who is now one of the world's preeminent ge
neticists and the director of the Broad Institute of Harvard Uni
versity and Massachusetts Institute of Technology, was a mem
ber of the team that first year. It was his senior year at Stuyvesant 
High School in Manhattan, and Lander was captain of the 
school's math team. "Math team was great," he says. "About 
thirty kids met each morning for an hour before school in a fifth-
floor room of Stuyvesant High School, and the captain of the 
team was responsible for running the session. This was before 
you had databases full of math problems, so the captain of the 
math team, upon his ascension to office, came into possession of 



i n t r o d u c t i o n 3 

what we called 'the shopping bag.' It contained mimeographed 
sheets of problems and strips of problems and records of the city 
math contests for a long time. So the captain of the team would 
pull problems out of the bag and be responsible for leading the 
group." 

When most people think about math competitions, they 
probably envision a roomful of kids struggling to perform com
plex calculations faster than the next person. But most of the 
problems in high-level competitions have very little to do with 
calculations. Solving these problems requires a sophisticated 
grasp of mathematical ideas, so that familiar concepts can be ex
tended in new directions. The mathematical procedures everyone 
learns in school aren't enough. Becoming an excellent problem 
solver demands creativity, daring, and playfulness. A math com
petition is more like a game than a test — a game played with the 
mind. 

The structure of an International Mathematical Olympiad 
reflects the nature of the problems. The size of the teams has 
changed over time. In the early years each team had eight mem
bers; since 1983 they have had six. But the format has stayed the 
same. On the first day of the competition all of the Olympians re
ceive a sheet of paper containing three problems, and each com
petitor, working individually, has four and a half hours to make 
as much progress on the problems as he or she can. The next day 
they have the same amount of time to solve three additional 
problems. 

But the competition doesn't begin when the competitors ar
rive in the Olympiad city, because the assembled team coaches 
first have to decide which problems will be on the exam. In Erfurt 
the teams had four days to tour the city and get to know one an
other. 

"It was fascinating — the single team we most resembled 
and got along with were the Russians," says Lander. "So we 
hung out with the Russians a lot and got into all sorts of mischief. 
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We were in East Germany, and the Russians figured at that point 
that they owned East Germany, so they weren't going to get in 
trouble. I remember very well going up to the top of the dormi
tory at the school where we were staying, and the Americans and 
Russians throwing water balloons down on the street. The Rus
sians might not do it back home, but they could do it in East Ger
many." 

O n July 8 the eighteen teams competing in the Sixteenth In
ternational Mathematical Olympiad gathered at a local univer
sity to take the exam. All the worries about the U.S. team's abili
ties had been for naught. Lander and his teammates finished 
second — just a few points behind the Soviet Union. 

V 
This book is first and foremost the story of the Forty-second In
ternational Mathematical Olympiad, which took place in 2001 
on the campus of George Mason University in Fairfax, Virginia, 
right outside Washington, D . C . The event has grown substan
tially since 1974. Nearly 500 kids from eighty-three countries 
competed in the Forty-second Olympiad, compared with about 
125 in 1974 (and compared with the 150 or so who competed 
in 1981, the only previous Olympiad held in the United States). 
The Soviet team has splintered into teams from Russia, Latvia, 
Kazakhstan, and other former republics. Teams from South 
America and Africa — Argentina, Brazil, Colombia, Paraguay, 
Peru, Uruguay, Venezuela, Morocco, Tunisia, and South Africa 
— now compete. So do teams from East Asian countries such as 
Macau, Hong Kong, and the Philippines. 

As one might expect, the competitors at the Forty-second 
Olympiad had their cultural differences, most notably the more 
than fifty languages that were spoken. But in general the Olym
pians were remarkably compatible. Most knew at least a little 
English, since English has become the language in which most 
of the world's higher-level mathematics is conducted. A soccer 
game immediately sprang up in the courtyard of the dormitory 
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complex where they were staying and continued on and off for 
the duration of the event. All of the competitors could share CDs 
and hand-held video games, compare national qualifying exams, 
and lament the poor quality of the food offered in the college caf
eteria. 

Into this talkative, energetic, competitive mass of young 
mathematicians the U.S. team fit perfectly. Its members were 
fairly typical of those who had been on past U.S. teams. Five had 
just graduated from high school; one would begin his sophomore 
year that September. Three had spent at least part of their child
hood in the San Francisco Bay area, two were from New Jersey, 
and one was from outside of Boston. Three participated in other 
team sports and were fairly athletic; the other three limited their 
athletic endeavors mostly to Ultimate Frisbee. All had been par
ticipating in math competitions at least since middle school. 

If you had met the members of the U.S. team in a cafeteria or 
library or on the street, you wouldn't think there was anything 
special about them. They talked quickly and intensely among 
themselves, sometimes about math but usually about other sub
jects. They were rabidly interested in games of all sorts. They 
liked music, pizza, and movies. 

But these kids were special. They were the products of one 
of the most intense selection processes undergone by any group 
of high school students. More than 15 million students attend 
public and private high schools in the United States, and nearly 
half a million take the first in a series of exams that culminates in 
the selection of the U.S. Olympiad team. The six individuals who 
emerge from that process are the best mathematical problem 
solvers of any American kids their age. Even someone who knew 
as much mathematics as they do would not have the benefit of 
the rigorous training the Olympians undergo. 

What is it about the members of an Olympiad team that 
makes them such superb problem solvers? Some people would 
ascribe their talents simply to genius, saying that their accom-
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plishments are so remarkable as to be beyond understanding. 
This use of the word "genius" as a label for the inexplicable has a 
long history. In classical Rome genius was the spirit associated 
with each individual from birth who shaped that person's char
acter, conduct, and destiny. People sacrificed to their genius on 
their birthday, expecting that in return the guiding spirit would 
provide them with worldly success and intellectual power. 

In the modern world the term often retains a hint of the su
pernatural. To call someone a genius is to imply that he or she is 
somehow distinct from normal human beings, with apparent ac
cess to experiences or thoughts that are denied to others. Genius 
from this perspective can seem to be, in the words of Harvard 
professor Marjorie Garber, "the post-Enlightenment equivalent 
of sainthood." 

This way of thinking can skew even the most levelheaded 
analysis. In describing the achievements of the physicist Rich
ard Feynman, Cornell University mathematician Mark Kac once 
made what has become a well-known distinction: 

There are two kinds of geniuses, the "ordinary" and the 
"magicians." An ordinary genius is a fellow that you and I 
would be just as good as, if we were only many times better. 
There is no mystery as to how his mind works. Once we un
derstand what they have done, we feel certain that we, too, 
could have done it. It is different with the magicians.... The 
working of their minds is for all intents and purposes incom
prehensible. Even after we understand what they have done, 
the process by which they have done it is completely dark. 

Kac's distinction is beguiling, but it's really just a modern restate
ment of the Roman belief in spirits. Are the workings of some 
minds really incomprehensible? Or do great achievements rely 
on straightforward extensions of everyday thinking and imagin
ing? Can profound advances in the arts and sciences be analyzed 
in such a way as to reveal their origins? Or are some realms of ex-
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perience shut off from us forever, hidden behind the tantalizing 
veil of "genius"? 

The varied meanings of the word complicate efforts to an
swer these questions. In modern parlance the term is often de
based. People say that a politician is a genius at wooing voters. 
Newspapers label successful football coaches sports geniuses. In
terior decorators, advertising writers, land developers, and coun
try and western singers are all hailed as geniuses. 

In middle and high schools, "genius" is usually a term of de
rision. The word is used to taunt someone who is good at math 
or a dedicated writer or simply more interested in schoolwork 
than the average student is. Even as adults, many people would 
feel uncomfortable being labeled a genius. The word seems an 
unwanted burden, a harbinger of unfulfilled expectations. 

The kids on a U.S. Olympiad team would not consider 
themselves geniuses. They have become incredibly adept at solv
ing immensely difficult mathematical problems. In that sense, 
they are prodigies, in that they have attained very high levels of 
performance at a young age. But they certainly are not geniuses 
in the sense that Homer, Archimedes, Shakespeare, Rembrandt, 
Newton, Mozart, or Einstein are so considered. 

Nevertheless, the members of an Olympiad team do share 
the attributes of genius in one respect: they employ the same 
intellectual tools that history's great creators have. They use in
sight, talent, and creativity to produce original solutions to baf
fling problems. They exhibit the competitiveness, breadth, and 
sense of wonder that enable them to achieve at levels inconceiv
able to most people. By watching the Olympians solve mathe
matical problems, it's possible at least to glimpse the qualities 
that have produced humanity's greatest triumphs. 

V 
Besides being about extraordinary achievements, this book is 
about mathematicians, a group that has received much atten
tion in popular culture recently. Mathematicians have been the 
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protagonists of hit movies (Good Will Hunting, A Beautiful 
Mind) and have figured prominently in well-received plays and 
novels (Proof, Uncle Petros and Goldbach's Conjecture). Prince
ton mathematician Andrew Wiles, who solved a famous mathe
matical problem called Fermat's last theorem in 1994, was even 
the inspiration for a musical in 2001 called Fermat's Last Tango. 

This attention has been a mixed blessing. More than a few 
of these entertainments have made mathematicians out to be 
fools, nerds, or madmen. "Many recent works of mathematical 
fiction portray mathematicians as insane," says Alex Kasman, a 
mathematician at the College of Charleston in South Carolina, 
who maintains a Web site that reviews hundreds of fictional 
works involving mathematics. "Certainly there are mathemati
cians with mental illnesses, just as there are people of other pro
fessions with mental illnesses. But the high correlation of the two 
in fiction both supports and generates an unfair stereotype in the 
general population that there is some deep connection between 
the two. When I was watching A Beautiful Mind, and the charac
ter of John Nash was suffering terribly from his mental illness, I 
heard a woman behind me say, 'I 'm glad I'm not a genius.'" 

Other stereotypes plague works of fiction featuring mathe
maticians, says Kasman. Occasionally mathematicians are de
picted as flamboyant and eccentric, like the "chaos theorist" 
played by Jeff Goldblum in the movie Jurassic Park. In other 
cases they are boring and repressed, like the husband (who also 
ends up deranged) in William Boyd's novel Brazzaville Beach. 
Rarely do moviegoers or novel readers encounter mathemati
cians with whom they might enjoy a conversation at a party. " I 
suppose no author wants to write about people who are ordi
nary," Kasman says. "So it's not surprising that very few fictional 
mathematicians are just ordinary people who like mathematics. 
But because most people do not personally know any mathema
ticians, they form their opinions of them based on these works of 
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fiction. My experience, on the other hand, suggests that mathe
maticians are as normal as the people in any other profession." 

One response to the stereotyping of mathematicians is to 
observe that scriptwriters and popular novelists stereotype all 
professions, even their own. But mathematicians have been ab
sorbing abuse for a long time. In the Greek drama The Birds, 
written by Aristophanes in the fifth century B . C . , a geometer 
named Meton arrives at a city founded by the Athenian Makedo 
and announces that he intends "to survey the plains of the air for 
you and to parcel them into lots." The populace denounces him 
as a "quack and imposter," beats him, and drives him from the 
city. In the novel Emma, published in 1815, Jane Austen asks 
whether a linguist, a grammarian, or "even a mathematician" 
could fail to appreciate the ardor of newfound love. 

In American secondary schools, the stereotype of kids who 
are good at mathematics is somewhat different. They are seen 
as social misfits, physically uncoordinated, interested only in 
mathematics and other geeky subjects. Sometimes this stereotype 
turns up in television shows and movies as the badly dressed, 
awkward, computer-programming male who can't find a girl
friend. 

The kids on an Olympiad team defy these brutally unfair 
stereotypes. Not all of them are interested in computers, science, 
or Star Trek. Some even claim to be not very good at mathemati
cal calculations, at least compared with other Olympians. In fact, 
many of their traits initially seem antithetical to mathematics. 
They have deep insights into the problems they are solving. They 
are blindingly creative. They perceive the beauty in abstract men
tal constructs with an almost religious passion. And they are able 
to combine those traits in such a way that each trait builds on the 
others (though in this book I examine a different trait for each 
team member and each Olympiad problem). 

None of the Olympians fits comfortably into the stereotype 
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of a mathematician. Each can be understood — and appreciated 
— only as an individual. 

V 
Finally, this is a book about mathematics — about its complexi
ties, its unreasonable effectiveness, its stark and breathtaking 
beauty. Many people believe that higher-level mathematics is 
conducted on a plane separate from normal thought, using con
cepts and logic that they could never hope to understand. To 
many mathematicians this belief seems misguided. They see 
mathematics as a smooth continuum from the numbers and 
shapes everyone learns in grade school to the frontiers of mathe
matical research. In many professions, acolytes need to make 
sudden leaps of achievement or skill, as when someone flies an 
airplane for the first time or teaches a class of boisterous stu
dents. Mathematics is not one of those professions. 

A book about art has to include some reproductions of art
work, and a cookbook has to have recipes. By the same token, a 
book about problem solving should contain a few mathematical 
problems. For many people, the automatic reaction upon turning 
a page and seeing a geometric diagram or an equation will be 
" O h no, not math!" That reaction is perfectly understandable. It 
arises from the boring mathematics classes most of us had to en
dure in school, the common belief that " I was never any good at 
math," and the widespread conviction that only the gifted few 
can hope to understand mathematics. 

The six Olympiad problems in this book probably should be 
seen as extended examples rather than as core parts of the story. 
You don't have to understand the problems in detail to appreci
ate the skills that distinguish the Olympians. And readers who 
skip or skim over the problems will be in good company. When 
the English zoologist Sir Solly Zuckerman was asked once what 
he did when he came across mathematical formulas in scientific 
papers, he replied, " I hum them." 
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But anyone who can calculate a loan payment or a batting 
average is capable of understanding the problems described in 
this book. Olympiad problems are designed to involve only the 
mathematics that people learn in high school. They don't require 
a knowledge of subjects usually learned in college, such as calcu
lus. Coming up with solutions to the problems is very challeng
ing. The reason the Olympiad is generally considered the world's 
hardest mathematical competition is that high school students 
have relatively few tools with which to solve the problems, com
pared with older students who know more mathematics. Still, 
many of the solutions the Olympians devise are relatively easy 
to describe. For the three problems given on the first day of 
the Olympiad, the chapters of this book provide relatively com
plete solutions, with a few supporting details given in the ap
pendix. For the second three problems, which are more com
plex, the chapters provide a general description of the solutions, 
with a somewhat more detailed treatment in the appendix. 
Working through one or more of the problems may take some 
time (though discussions of international relations, political ger
rymandering, or the science of dieting are often more compli
cated), but the effort will be rewarded. As James Newman wrote 
in his classic anthology The World of Mathematics, "There are 
few gratifications comparable to that of keeping up with a dem
onstration and attaining the proof. It is for each man an act of 
creation, as if the discovery had never been made before." 

Just as anyone can marvel at a great painting, a sublime 
piece of music, or a thunderous slam dunk without being a 
painter, composer, or basketball player, so anyone can appreciate 
the power and beauty of elegant mathematical problems and so
lutions. They are products of the human mind, as mysterious and 
inspiring as are all acts of creation. 
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The fireworks spilled from the sky, right above the Washington 
Monument, as if they were being poured from a pitcher. The 
sound was tremendous — great booming explosions that rolled 
in waves across the Potomac River. O n the upper deck of an or
nate Mississippi River paddle wheeler named the Cherry Blos
som, several hundred teenagers — in jeans and T-shirts mostly, 
bearing backpacks and cameras, obviously from many different 
countries — gazed upward at the spectacle. Several Chinese kids 
chattered merrily in Mandarin. Three or four Canadians tried to 
remember the lines to "America the Beautiful." But most of the 
observers were silent, staring slack-jawed at the fireworks dis
play, the reds, greens, and yellows playing across their faces like 
half-forgotten ideas. 

An hour before, the odds seemed slim that this show would 
get off the ground. As the Cherry Blossom paddled upriver from 
Alexandria, Virginia, a fierce storm swept across the Potomac, 
wrapping the ship in a thick blanket of swirling rain. The orga
nizers of the cruise exchanged worried glances. Washington's 
Fourth of July fireworks show was supposed to be the inaugu
ral event of the Forty-second International Mathematical Olym
piad. Many of the competitors had endured long overnight 
flights specifically to be here for the fireworks. If the show was 
canceled, the Olympiad would be off to an inauspicious start. 

But by dusk a sharp wind had scattered the clouds, unveiling 

15 
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a gibbous moon in the southwestern sky. Right above the city, 
however, the skies hadn't cleared. Throughout the show the fire
works burst first in and then below and then above a roiling 
cloud bank. The flashing waves of light gave the atmosphere a re
markable texture, a sort of weave, as if the clouds and winds 
were conspiring to reveal great and complex patterns. 

Even before the sound of the final explosion had faded 
away, the young mathematicians on board the Cherry Blossom 
were filing belowdecks. The ship's ballroom was decorated to re
semble a nineteenth-century saloon, but the Olympians paid no 
attention to the decor. They were intent on resuming what they 
had been doing for the entire trip upriver: playing games. The six 
members of the U.S. team were playing Association with the Bul
garians. The game begins with two players, one from each team, 
agreeing on a random word. One of the two then announces to 
all the rest of the players a word associated with the original 
word — but he has to be tricky, because if the clue is too obvious 
and his teammates fail to guess the word, the other team will al
most certainly get it on the very next turn. In this game the word 
was "neck," and the U.S. team was going first. David Shin, a 
spiky-haired high school senior from West Orange, New Jersey, 
said "turtle." His U.S. teammates immediately answered "neck." 
In their somewhat fractured English, the Bulgarians objected — 
what possible connection could "turtle" have to "neck"? In Bul
garian the word for a turtleneck is "polo." 

The next word was "shirt." Oaz Nir — handsome, trim, the 
son of Israeli parents who had immigrated to Louisiana — said 
"no." His teammates answered "yes." A kid on the Bulgarian 
team said "tea," and his teammates responded "coffee." Oaz im
mediately said "shoes," and his teammates answered "shirt." 
Wait, said the Bulgarians, how could you possibly get "shirt" out 
of "no" and "shoes"? The Americans replied, "No shirt, no 
shoes, no service." 

Games like this were going on all around the room. The Ko-
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reans, cross-legged on the floor, were playing bridge and laugh
ing over the hapless play of a teammate. Over by the stairs the 
Russians, joined occasionally by their former countrymen from 
Belarus and Latvia, were playing blackjack. The Irish were play
ing a game that they hadn't named yet. 

Actually, "play" is too mild a word to describe what the 
people in this room were doing. They were competing. They 
leaned forward into the games, their eyes bright with calculation 
and strategy. Though many were still jet-lagged, they seemed full 
of energy, eager for a new game as soon as the previous game was 
won or lost. One got the sense that they could go on playing these 
games for many hours. 

Sitting with the American team was an attractive, green-
eyed, vivacious blond college student named Melanie Wood. 
When she was in high school, Melanie had been on the U.S. 
Olympiad team that finished third in Taiwan in 1998 and on the 
team that finished ninth in Bucharest in 1999. Now that she was 
in college and therefore no longer eligible for the Olympiad, she 
was instead serving as the U.S. team's guide. Each of the eighty-
three teams had a guide, who stayed with the team throughout 
the Olympiad. The organizers tried to find a person who spoke 
the team's language; if that wasn't possible, they looked for 
someone who was affable and good at communicating without 
words. Over the next two days the guides would accompany 
their teams to the National Zoo and to a minor-league baseball 
game. After a rest day the competition would start on Sunday 
and conclude on Monday. During the week after the exam the 
guides and teams would visit the Smithsonian Institution, a 
nearby amusement park, and the science museum and aquarium 
in Baltimore. Meanwhile, teams of judges would be scoring the 
Olympians' papers. Nine days after the fireworks show, just up 
the Potomac at the Kennedy Center for the Performing Arts, the 
gold, silver, and bronze medals would be awarded. 

The United States has sent a team to every Olympiad since 
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1974 (though the competition did not take place in 1980, when 
many international events, including the Olympic Games in 
Moscow, were disrupted because of the Soviet invasion of Af
ghanistan). Over that period 119 different students have repre
sented the United States at the Olympiad. Here is the number of 
girls who have been on those teams: one. Melanie Wood is the 
only girl who has ever been a member of a U.S. Olympiad team. 

Plenty of girls have qualified for the teams in other coun
tries. Two members of the Finnish, the Australian, and the Trini
dad and Tobago teams at the Forty-second Olympiad were girls. 
The teams from Denmark, Kuwait, and Thailand all had female 
members. Of the 473 competitors — representing probably the 
most talented group of young mathematicians in the world — 28 
were girls. That wasn't a lot, but it was more than at many past 
competitions. 

Everyone at an Olympiad has hypotheses about why 
women are underrepresented at the highest levels of mathemati
cal achievement. Yet none of the explanations accounts for 
Melanie's experiences. She was born in 1981 in Indianapolis, In
diana. Her parents, Sherry Eggers and Archie Wood, had met at 
the public middle school where they both were teachers; Sherry 
taught Spanish and French; Archie was a math teacher. Archie 
had three daughters from a previous marriage, but they were all 
much older than Melanie, more like aunts than sisters. 

When Melanie was six weeks old, her father died of cancer 
at the age of thirty-seven. Her mother, still teaching at the mid
dle school, raised Melanie on her own. They spent long hours 
together doing errands. At home they read books and played 
games. By the time Melanie entered kindergarten, she was read
ing novels written for teenagers and knew how to multiply and 
divide. " M y mom is a teacher, and she loved more than anything 
to teach," Melanie says. "She taught me everything she could." 

Melanie attended good public schools in the eastern suburbs 
of Indianapolis and got good grades, but she did not specialize in 



i n s p i r a t i o n 19 

math. " I can't recall ever thinking that she was superior in math 
compared with her other classes," says her mother, who later be
came principal of a middle school in Indianapolis. "She was 
bright in everything. I mean, she was reading difficult books 
in kindergarten, all those Baby-sitters Club books, the kinds of 
things that older kids read. And we used to play math games — 
actually I don't think of them as math games, just as games. You 
know, easy equations and things like that." 

By the seventh grade, Melanie was in an accelerated math 
class. But she also excelled in many other areas; she was inter
ested in drama, writing, and student government. (In high school 
she would be editor of the school newspaper, student govern
ment vice president, and a leader of the school's theatrical pro
ductions.) Outgoing and an easy conversationalist, she has al
ways been extremely personable, with a wide range of friends 
and interests. Then one week in the spring of her seventh-grade 
year, she found her calling. 

Every year thousands of middle school and junior high 
school students in the United States participate in a math compe
tition known as Mathcounts, which was established in 1983 
by the National Society of Professional Engineers, the National 
Council of Teachers of Mathematics, and the C N A insurance 
company. The idea was to give kids a way to hone their math 
skills and compete against other kids, just as spelling bees are de
signed to award achievement under pressure. In Mathcounts, 
four-person teams from individual schools compete at the chap
ter level, which usually consists of a city and the surrounding re
gion. The highest scoring teams and individuals then compete at 
the state level, after which the four top scorers in each state form 
a team that goes to the national level. Though the competition 
is still largely unknown outside the group of people who care 
deeply about mathematics, it attracts intense interest among a 
highly dedicated subculture of students and their teachers. 

In the seventh grade, Melanie wasn't part of that subculture; 
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she had never heard of Mathcounts. " I was asked the week of the 
competition — it was a Wednesday or a Thursday, I think — if I 
could go with the team to a math competition that weekend," 
she recalls. "The coach of the team had heard that there was 
this girl in the seventh grade who was in an advanced math class, 
and he figured that I would be okay at this." That Saturday she 
drove with the coach and the three other members of the team — 
eighth-graders whom she didn't really know — to a middle 
school in northern Indianapolis, where she competed against 
eighty or so other kids from the surrounding region. Melanie fin
ished first in the competition. At the state competition a month 
later in Terre Haute, against the best seventh- and eighth-grade 
math students in Indiana, Melanie again finished first. 

" M y mom and I were just totally stunned by all this," she 
says. " I knew that I was pretty good at math, but I was pretty 
good at English and science and history — I was a good student. 
But I never would have guessed that I would win as a seventh-
grader in the city, much less the state. That really flipped my 
world around in terms of making math something important in 
my life and changing my view of who I was and what I was 
good at." 

At that point Melanie and three eighth-graders from other 
schools in Indiana had about a month to prepare for the na
tional competition in Washington. In Mathcounts the coach of 
the team with the highest score in the state competition becomes 
the coach of the newly formed state team. Every year for more 
than a decade that coach had been Bob Fischer, a math teacher at 
Honey Creek Middle School in Terre Haute. Fischer had built 
championship teams year after year by getting hundreds of kids 
in his school enthusiastic about math, and from these groups a 
few kids inevitably emerged who went far in the competition. " I 
often tell my students that I'm not a gifted teacher," he says, "but 
I do have one gift. I can tell when you're working at your full po
tential." 
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Fischer had never heard of Melanie before she won the state 
competition. Now she was the only girl and the only seventh-
grader on the Indiana state team. "It took only a couple of prac
tices for me to realize that she was something special," says 
Fischer. "Her questioning and her depth, her understanding of 
not just the problems but the theory behind the problems, so that 
she could apply the concepts to much broader and more difficult 
problems — that was clear, even in the seventh grade. There's a 
book called The Art of Problem Solving — she got that at the 
state level as a gift. She sat down and read that book like a novel 
— she absorbed it that fast." 

Before she started training with the state team, Melanie had 
never been around other kids who were extremely good at math. 
"The other students on the team thought and talked about math 
problems in the same way I did, and this was something I had 
never shared with any peers, or even teachers before. It was really 
exciting to be able to communicate about the problems I found 
so interesting to people who could understand my ideas. After 
one practice my mom said, 'You four were speaking another lan
guage.' Imagine what it would be like if you thought in a lan
guage other than English, and for the first time you found some
one else who spoke that language!" 

At the national competition Melanie finished fortieth of the 
228 competitors. Of the thirty-four girls, she had the third-high
est score. The next year, when she competed as an eighth-grader, 
the Indiana team was first in the nation, and Melanie finished 
tenth overall. 

Melanie was twelve years old when she won the Indiana 
Mathcounts competition. A few months earlier she hadn't 
thought of herself as particularly distinguished in math. Where 
did her prodigious mathematical talents come from? 

Several explanations come to mind. One is that she inherited 
her abilities from her math-teacher father — that her mathemati
cal talents were somehow encoded in her genes. But purely ge-
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netic explanations for mathematical abilities immediately run 
into difficulties. Few well-known mathematicians are the chil
dren of mathematicians. Talent in mathematics seems to pop up 
out of nowhere and then fade within a generation or two. And 
Melanie's father was not a mathematician but a math teacher, 
though by all accounts a very good one. 

Another possibility is that Melanie was somehow trying to 
compensate for the loss of her father through her interest in 
mathematics. She once told a reporter from a national science 
magazine, "[My father] is with me in the competitions, or even 
when I am just thinking about math. His spirit and his memory 
are there in my mind." Yet she concedes that his influence can 
easily be overstated. Her mother agrees. "Some people have said 
that she pursued this because her dad was a math teacher, and 
I've told her millions of stories about her dad and what a great 
person he was. But I don't think she feels the loss of him like I 
did. I think she was just glad that there was this good person who 
was her father. I don't think she was trying to do well because it 
would make her dad happy." 

A third possibility — a suspicion often harbored about the 
parents of high-achieving children — is that her mother pushed 
Melanie to excel in mathematics. But this explanation, too, rings 
false. Talented kids who are pressured by their parents often end 
up turning away from both their talents and their parents, yet 
Melanie and her mother remain very close. Furthermore, her 
mother's success as an educator and her matter-of-fact approach 
to child rearing betray no traces of hyperambition. 

"She's the only child I ever had," her mother says, "so I can't 
say I was ever surprised at anything she did. I assumed that she 
would be very bright. I know that sounds very stupid, but I can't 
think of any other way to say it. If I contributed anything to help 
her, it was teaching her that there isn't anything you can't do or 
be. And she still believes that. It's amazing the things she does. 
She's an amazing person. I'm very proud of her." 
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It isn't that these pop-psychology explanations are necessar
ily wrong. But they ignore the countless moments of chance and 
necessity that go into constructing a life. Melanie tells a story 
about something that happened when she was in kindergarten 
that obviously had a great effect on her. For as long as she can re
member, she has been fascinated by a mathematical structure 
known as " Z mod 2 Z . " The term may sound forbidding, but it's 
really not that complicated. Z (the symbol comes from Zahl, the 
German word for "number") represents the whole numbers — 
0, 1 ,2, 3, and so on — along with the negative whole numbers, 
— 1, - 2 , - 3 , and so on. When applied to Z , the operation "mod 
2 Z " sorts these numbers into two categories. One category cor
responds to the odd numbers and the other to the even numbers. 
It is a mathematical analog of the ways we divide objects into 
contrasting dualities: light and dark, on and off, male and fe
male, alive and dead. 

"My earliest memory of this structure was when I was in 
kindergarten — and I got in trouble for it," Melanie says. "There 
were these little blue flash cards that had numbers on them from 
one to ten — I remember this so clearly — and I was playing 
with them and separating them into evens and odds. Maybe I'd 
heard the words 'even or odd,' but I hadn't really thought about 
it or understood it. And I was realizing things like when you 
added two odd numbers, no matter which two they were, you al
ways got an even number, and when you added an even number 
to an odd number you got an odd number — things like that. 
And that's really the structure of Z mod 2 Z . I got in trouble be
cause I wasn't supposed to be playing with those flash cards. I'd 
already passed that level and was supposed to be playing with 
some other flash cards. I had probably just turned five, but I re
member learning these facts about odd and even that were really 
just cool, just a very simple way of understanding the group 
structure of Z mod 2Z. 

" Z mod 2 Z is in many ways the simplest mathematical 
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structure. Yet you could study the mathematical properties of 
this structure for your entire life and you would never begin to 
understand it all. It's incredibly deep." 

V 
Camilla Persson Benbow, dean of the Peabody College of Educa
tion and Human Development at Vanderbilt University, occupies 
the central suite of the Faye and Joe Wyatt Center, a magnificent 
Georgian office building that crowns a gentle slope on the south 
side of Nashville. The view from her window is of a perfect 
greensward of academic lawn, with the distant hills of central 
Tennessee just visible above the trees. 

Benbow's academic career began almost three decades ago 
in Baltimore. As a senior at Johns Hopkins University, she had 
taken a job as a research assistant on a study of mathematically 
gifted junior high and high school kids. Each week she spent 
hours on the phone interviewing talented students and their 
parents. The director of the study was a psychology professor 
named Julian Stanley. 

Stanley had become interested in mathematical precocity in 
the summer of 1968. Johns Hopkins had a summer program that 
brought middle school and high school students from the Balti
more area to the Hopkins campus to learn computer program
ming. One day an instructor in the program told Stanley about 
one of her students, an eighth-grader named Joseph Bates, who 
was teaching the instructors to program rather than the other 
way around. " I was somewhat hesitant and perhaps even reluc
tant at first to get involved [with a single student]," Stanley re
called at a 1992 conference held to honor his work. "There were 
too many other pressing duties. But I did, and my life and career 
were never to be the same." 

Stanley first had to figure out what Bates could handle aca
demically. Traditionally, this would have meant giving him an 
IQ test, but Stanley decided to take a different approach. Bates 
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clearly was capable of doing college-level work, so Stanley de
cided to have him take the Scholastic Aptitude Test normally 
given to college-bound high school juniors and seniors. Neither 
Stanley nor Bates can remember Bates's exact scores, but they 
were "startlingly high," in Stanley's recollection. 

At that point Bates was thirteen years old. One option was 
to move him up a grade, into high school. But his local high 
school would not let him enroll in the Advanced Placement 
courses he obviously needed. So Stanley again decided to inno
vate. After discussing various options with Bates's parents, he 
called the Hopkins admissions office. In the fall of 1969 Bates en
tered Johns Hopkins University as a college freshman. 

Bates was far from the first youngster to enter a high-rank
ing college. Bright kids had been entering college early for many 
years, with mixed results. Many had found themselves isolated 
from peers, scorned by their classmates, and sometimes over
whelmed by the work. Bates had none of those difficulties. By the 
age of seventeen he had earned a master's degree in computer sci
ence from Hopkins, and he went on to become a distinguished 
research professor at Carnegie Mellon University in Pittsburgh. 
There he became involved in the Oz project, an effort to build 
computer software that combines characters, stories, and drama. 
More recently he cofounded Zoesis, a company in Newton, 
Massachusetts, that creates interactive cartoon characters for the 
World Wide Web with behaviors that mimic human emotions. 

The experience with Bates piqued Stanley's curiosity. How 
many more kids were stuck in middle schools and high schools 
doing work that was obviously too easy for them? He wrote a 
grant proposal aimed at identifying and accelerating such kids, 
and in 1971 the newly created Spencer Foundation gave him a 
large award to carry out his plans. The next year Stanley sent 
letters to middle and junior high schools in the Baltimore area 
asking them to identify students who had previously scored in 
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the top percentages on national standardized tests. About 450 
seventh- and eighth-graders volunteered to take the SAT and 
other college-level tests. The next year Stanley contacted schools 
throughout the mid-Atlantic region; the year after that, letters 
went to schools throughout the country. 

Stanley's interest in Joe Bates has led to one of the largest 
programs of educational acceleration in U.S. history. Today more 
than one hundred thousand seventh- and eighth-graders annu
ally take the SAT or other high-level examinations. Few of the 
top scorers go directly to college — that route still tends to cause 
too many difficulties. But kids who do well on the tests qualify 
for summer programs, weekend courses at universities, indepen
dent study programs, travel abroad, and other enrichment op
portunities. In the words of one researcher, "Psychology is often 
criticized for not being cumulative. Julian's work shows how it 
can be." 

That initiative was still in its very early stages when Camilla 
Benbow began working with Stanley in 1976. Her first job was 
to help with a five-year follow-up study of middle-schoolers who 
had achieved especially high mathematics scores, which was the 
initial focus of Stanley's program. She found the work, and the 
kids, fascinating. " In December I talked with Julian and said that 
I would really be interested in staying on as a graduate student, 
and he loaded me up with books over the break — we had a 
really long break back then. I remember reading about Lewis 
Terman's fifty-year study of gifted students at Stanford, and I 
thought, 'Why can't I do this? I'm young enough.'" 

Today Benbow codirects, with psychologist David Lubinski, 
the Study of Mathematically Precocious Youth, or SMPY, which 
is tracking more than five thousand of the students Stanley iden
tified in the 1970s and 1980s. As in previous studies of academi
cally advanced students, the subjects — now well into middle 
age — have had remarkably productive careers. More than a 
quarter have earned Ph.D.s, compared with about one percent 
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of the U.S. adult population as a whole. They have published 
books, articles, and short stories. One has adapted Pink Floyd's 
The Wall into a multimedia rock opera. Others are video game 
developers, software engineers, violinists, corporate executives. 
According to Benbow, the group she has been studying has sur
passed in achievement any other large group of children followed 
into adult life. 

Yet the Study of Mathematically Precocious Youth has al
ways had one notable idiosyncrasy. It has always been able to 
find a far greater number of mathematically talented boys than 
girls. 

Stanley and his colleagues weren't expecting that. From the 
beginning they were focusing on students scoring in the top few 
percentages on national exams. At that level, they thought, the 
differences between boys and girls should be minimal. 

The results of their first SAT test proved otherwise. Of the 
396 seventh- and eighth-graders around Baltimore who took the 
test in March 1972, the 223 boys had an average score of 500 on 
the mathematics portion of the SAT. The 173 girls had an aver
age score of 442. And the higher scores were even more skewed. 
In that first test, 43 boys scored above 600. Not a single girl did. 
Later tests identified higher-scoring girls, but the overall discrep
ancy remained. Among seventh- and eighth-graders who have 
taken the SAT, about twelve times as many boys as girls have 
scored above 700. 

" S M P Y was not formed to look for gender differences, but 
almost every woman who walks into the study is astounded 
by them," says Benbow. "And they're very specific differences. 
There're no differences in overall intelligence between girls and 
boys. It's a difference in relative strengths. It's the specific factor 
of math reasoning ability that seems to separate the sexes." 

In 1980 Benbow published her first scientific paper, in Sci
ence magazine, with Julian Stanley as her coauthor. Titled "Sex 
Differences in Mathematical Ability: Fact or Artifact?" it ob-
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served that the differences between boys and girls could not be 
the result of differences in courses taken, because boys and girls 
in the seventh and eighth grades have taken essentially the same 
math courses. The paper acknowledged that different experi
ences outside the classroom might have "somewhat increased" 
the scores the boys received. But Benbow and Stanley clearly 
leaned toward a biological explanation for at least part of the 
test-score difference. "We favor the hypothesis that sex differ
ences in achievement in and attitude toward mathematics result 
from superior male mathematical ability, which may in turn be 
related to greater male ability in spatial tasks," they wrote. 

The article triggered what Benbow calls a "media field day." 
Newspaper and news magazine headlines shouted "Do Males 
Have a Math Gene?" (Newsweek) and "Are Boys Better at 
Math?" (New York Times). Other academics called the idea that 
boys were biologically favored in math "feeble," "fallacious," 
and "pseudoscientific." The controversy pushed Benbow even 
more firmly into the "biology matters" camp. In a long 1988 ar
ticle in the journal Behavioral and Brain Sciences, she pointed to
ward several lines of evidence that suggest a biological advantage 
for boys. The same difference between boys and girls is found in 
other countries, even those in which the math culture is quite dif
ferent. The differences appear at very early ages, perhaps even in 
preschool, though it depends on the specific ability being mea
sured. Even girls who are equally interested in math score worse 
overall on tests than do boys. And odd biological correlates 
keep turning up: for example, among mathematically precocious 
children, a disproportionate percentage are left-handed, near
sighted, and prone to allergies, and left-handedness (though not 
the other two traits) is more common in boys than in girls. 

Benbow generally has refrained from speculating about how 
a sex difference in mathematical abilities could have originated, 
but others have been less cautious. One prominent argument in
volves our evolutionary history. Several studies have shown that 
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boys are better on average at imaging and manipulating shapes 
in their minds. Of course, say those who favor biological expla
nations of our traits; when human beings were evolving, the men 
hunted for meat while the women gathered plants. Men there
fore evolved a keen spatial sense to find wild animals, to gauge 
the distance from their spears to their prey, and to throw their 
spears accurately. 

This explanation has many flaws. Spears designed to be 
thrown were a relatively late invention in human societies; hunt
ing was not necessarily a major source of food for early humans; 
and women also would have needed a strong spatial sense if 
they were gathering edible plants in the wild. Still, this explana
tion has a certain intuitive appeal. One study of boys in hunter-
gatherer societies found that they throw sticks and rocks about 
three times as much as girls do, often at small animals. 

Another popular explanation for the boy-girl discrepancy in 
math is that girls are more interested in people, presumably be
cause they are practicing to be mothers, while boys are more in
terested in objects. For example, a somewhat controversial study 
conducted in the 1950s found that people were the subject of 80 
percent of the stories told by two-year-old girls and only about 
10 percent of the stories told by boys, who were much more 
likely to talk about objects like trains and cars. Another study 
found that baby girls pay much more attention to patterns that 
resemble facial expressions, whereas infant males are more inter
ested in blinking lights, geometric patterns, and colored photo
graphs of three-dimensional objects. 

But any hypothesis about an inborn male advantage in math 
faces an almost insuperable obstacle. How can anyone tell if dif
ferences in observed behaviors have a biological or a social ori
gin? Boys and girls at eighteen months of age show no difference 
in mathematical abilities, which even at that stage are remark
ably advanced; human babies quickly develop a sense of "how 
much" and can make simple comparisons, say between three and 
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two. But by eighteen months, parents and other adults have be
gun to treat boys and girls differently. Adults talk to boys and 
girls in different tones and using different words; these are gen
eralizations, of course, but they apply in a surprising number 
of cases. Boys are given Erector sets and Legos, while girls are 
given tea sets and dolls. As soon as boys can walk they are en
couraged to do sports, while rambunctious girls are urged to be 
more ladylike. 

This socialization intensifies as soon as children go to 
school. Education researchers have found that teachers in U.S. el
ementary schools spend more time teaching math to boys than to 
girls. Boys more often play with scientific toys, participate in 
mathematical games, and read math books. And in many Ameri
can households, when a child is having trouble with math home
work, the mother's response is, " G o ask your father. I was never 
any good at math." 

Despite these differences, sixth-grade boys and girls as a 
whole — though not those at the highest levels of achievement 
— average about the same on tests of mathematical ability. But 
then, at least in the United States, far more powerful social forces 
kick in. According to Melanie Wood's coach, Bob Fischer, " I 
think it starts in upper grade school and middle school. Girls 
hear that math is something boys do and girls don't do. Also, in 
middle school, girls start to feel that many boys won't like to be 
around them because they're too smart, so they pull back — I 
can see that happening." 

Melanie has a somewhat different perspective. In middle 
school, kids begin to reflect on the social roles around them and 
how they will fit in, she says. That's when girls who enjoy math 
start to feel shut out. "There's no role in our society for girls who 
are good at math," she says. " I don't mean to imply that people 
who are good at math are nerds — many of them aren't. But it's 
easy to picture a male math nerd — there are movies about them, 
every T V show has a male nerd in there. There's no picture of 
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what that would be for a girl. And because of the lack of that role 
in our society, a lot of girls don't see themselves that way." 

Middle school is also when math becomes more competi
tive, and many girls dislike the added pressure. Girls have a ten
dency to prefer cooperative to competitive activities, studies of 
the classroom have shown. Boys who are skilled at math also 
begin to develop a certain macho air — " I can do problems 
that you can't." And they seem to be better at handling defeat, 
maybe because some of them have learned how to lose by playing 
sports. One study showed that when high school boys failed at 
an algebra problem, they increased their efforts, whereas high 
school girls tended to decrease their efforts. 

The premier middle school competition, Mathcounts, also 
can be intimidating to girls. In the initial rounds, students solve 
problems individually and in their four-person teams. These 
rounds usually take place in small rooms without spectators or 
audiences. The final round is different. Called the Countdown 
Round, it is usually held in an auditorium before a large, enthusi
astic crowd of parents, coaches, and reporters. Two at a time, the 
top-scoring students in the earlier rounds sit next to each other 
with their hands poised over buzzers. A problem such as the fol
lowing is flashed on a screen: 

What is the value of 23 X 3 X 53 X 7? 

There is an easy way and there is a hard way to answer this 
question. The hard way is to multiply out 2 3 X 3 x 5 3 x 7, which 
equals 2 x 2 x 2 x 3 x 5 x 5 x 5 x 7 . The easy way is to realize 
that the three 2s (23) can be multiplied by the three 5s (53) to yield 
three 10s. Therefore 2 3 X 3 x 5 3 x 7 is equal to 3 x 7 x 10 x 10 
X 10, which is equal to 21 X 1,000, or 21,000. The typical na
tional Countdown Round competitor would answer this ques
tion in less time than it takes most members of the audience to 
read it. 

In the Countdown Round each question is allotted a maxi-
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mum of forty-five seconds. The first person to hit the buzzer has 
three seconds to answer the question. If that person is wrong, the 
other competitor has the rest of the time to produce an answer. 
The first person to answer a specified number of problems cor
rectly takes on a new challenger until a champion is crowned. 

"The Countdown Round at Mathcounts was the most in
tense experience I've ever had," Melanie recalls. " In seventh 
grade, before I did my first Countdown Round, I didn't want to 
do it, but they told me that I had to. So I got up there, and af
ter the very first question I had to run to the bathroom and 
throw up." 

By the time U.S. students enter high school, the patterns are 
set. More boys than girls take advanced math classes such as cal
culus. Boys are more confident about their mathematical abili
ties, even though their grades in math are lower on average. Even 
many girls who are very good at math gradually lose interest and 
turn their attention to other fields. 

These patterns have important consequences. Girls who 
learn to dislike math in high school are less likely to take math 
and science in college. As a result, they are less likely to become 
scientists or engineers or to go into other professions that require 
a technical background. Girls in high school and college then 
see relatively few women doing math and science and have to 
rely on the advice of men about whether to pursue an interest in 
those subjects. The cycle becomes self-reinforcing — and scien
tific studies that purport to find biological differences that make 
women less suited for such careers reinforce the status quo. 

If policymakers and administrators decide that they want 
to encourage women to be more involved in mathematics, they 
have several options. They can give girls more incentives to study 
mathematics — for example, by providing college scholarships. 
They can give women preference in hiring decisions, so that fe
male students have more role models and mentors. They even 
can set up separate classrooms for girls to teach math in a more 
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nurturing way. But all of these options are susceptible to the criti
cism that they are a waste of time and money because "girls just 
aren't as smart in math." 

Many people scoff at this stereotype and offer evidence to 
dispute it. In international comparisons of math achievement, 
girls in several other countries perform better on average than 
do U.S. boys. If mathematics instruction in the United States 
were better, they say, girls could do just as well as boys do now 
(though presumably the performance of the boys would also im
prove). Furthermore, social forces can quickly change the repre
sentation of men and women in an academic field. In 1970 just 5 
percent of the students in medical schools were female — and 
plenty of men could explain why women were not cut out to be 
doctors. Today about half of the students in medical schools are 
women. 

Even Camilla Benbow, who leans toward biological fac
tors in explaining at least some of the disparity between boys 
and girls, says that opinions about the origins of those differ
ences should not undercut reasonable efforts to eliminate them. 
"Whether the differences are biological or environmental in 
some ways doesn't matter, because our actions take place in the 
environment," she says. "We need to give girls equal opportuni
ties to excel in math. Girls who have the talents and the interest 
should be encouraged and should see the excitement of math and 
science. And then they should be allowed to make the decisions 
that fit them best. I don't want to push people into careers that 
aren't satisfying to them. At the same time, I don't want to ex
clude people from careers because of some stereotype. I think 
girls should be given the opportunity to sample widely and make 
wise choices and not feel that certain things are out of their realm 
because of their gender." 

V 
For many mathematically talented students, Mathcounts is just 
the first taste of high-level competition. In eighth grade many of 
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these students take a test called the A M C 8 ( A M C stands for 
American Mathematics Competitions, a program sponsored by 
the Mathematical Association of America). In high school they 
take the A M C 10 and A M C 12. A surprising number of students 
sign up for these competitions — about four hundred thousand 
annually take one of the A M C tests. From that group emerge the 
six individuals who will represent the United States at the Inter
national Mathematical Olympiad. 

All the A M C tests have the same format. Students take them 
before or after school or during math class, usually with their 
math teachers serving as proctors. The high school tests consist 
of twenty-five multiple-choice problems, and students have an 
hour and a quarter to answer as many questions as they can. The 
problems start easy and get tough. For example, one question on 
a recent A M C 10 was 

What is the maximum number forthe possible points of inter

section of a circle and a triangle? 

(A) 2 ( B ) 3 ( C ) 4 ( D ) 5 (E) 6 

This isn't a hard problem, but it helps to know some basic 
geometry. For any triangle, a circle can be drawn through the 
three points, or vertices, as shown by the triangles below with 
their circumcircles: 

Now imagine each of these circles getting just a bit smaller while 
the triangle stays the same size. In that case the circle will cut 
through the triangle not at the vertices but at two points just in-
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side each vertex. Thus the circle cuts through the triangle at six 
points, and the answer to the question is E . 

Students who do extremely well on any of the A M C tests are 
invited to the next level of competition. In March of each year, 
copies of the American Invitational Mathematics Examination 
(AIME) are mailed to the teachers of about ten thousand qualify
ing students. The A I M E consists of fifteen questions with whole-
number answers, and students have three hours to solve them. As 
might be expected, the questions are appreciably harder than 
those on the A M C tests. Here's an example (the solution can be 
found in the appendix). 

How many of the integers between 1 and 1,000, inclusive, can 

be expressed as the difference of the squares of two 

nonnegative integers? 

At the next level of competition, about 250 of the top A I M E 
finishers are invited to take the United States of America Mathe
matical Olympiad (USAMO), either at their own school or at a 
central location. The U S A M O marks the beginning of a dramatic 
shift in the nature of the competitions. The test has the same for
mat as an international Olympiad, with three problems to be 
solved in four and a half hours on each of the two days. Also, the 
problems no longer have multiple-choice or whole-number an
swers. Instead, they usually require that the competitors prove a 
mathematical result. Students can no longer excel by knowing a 
lot of mathematics and being pretty good with numbers. To do 
well on the U S A M O , they need an additional set of mathematical 
skills. 

A book called The Art and Craft of Problem Solving by for
mer math Olympian Paul Zeitz illustrates this shift in perspective 
with the following example. 

A monk starts to climb a mountain at 8:00 A . M . and reaches 
the summit at noon. He spends the rest of the day and that 
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night on the summit. The next morning he leaves the summit 
at 8:00 A . M . and descends by the same route he used the day 
before, reaching the bottom at noon. Prove that there is a 
time between 8:00 A . M . and noon at which the monk was at 
exactly the same spot on the mountain on both days. Note 
that the monk can walk at different speeds, rest, or even go 
backward whenever he wants. 

A student drilled in school mathematics would immediately 
try to change this problem into an equation. The monk could 
walk at speed v up the mountain. The time since he started could 
be labeled t. In that case, if he walked up the mountain at a con
stant speed, his distance up the mountain would be v X t. But 
wait — the monk can walk at different speeds and can even go 
backward. How can that be factored into the equation? 

The creative problem solver searches for alternate strate
gies. What are the essential elements of the problem? Can it be 
reframed to make it easier to solve? And then, whether through 
persistence, inspiration, or just plain luck, the flash of insight oc
curs. Pretend there is a second monk. As the first monk is coming 
down the mountain on the second day, the second monk travels 
up the mountain just as the first monk did the day before, with 
the same varying speeds and rests. The time when the two monks 
meet is the answer to the problem. 

Students who do well on the U S A M O are the superstars 
of high school mathematics. Each June the top twelve finishers 
travel to Washington and are feted at the State Department. In 
the ornate diplomatic reception room on the top floor of the 
building, overlooking the Mall and the Potomac River, govern
ment and industry officials make speeches and present special 
awards and scholarships. Right before dinner the students tradi
tionally cross the street to the National Academy of Sciences to 
have their picture taken with the great bronze statue of Albert 
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Einstein that sits on the academy's front lawn. The pictures are 
posted on Web sites and hung on walls; among young mathema
ticians they are a badge of great distinction. 

V 
In 1998, when she was a junior in high school, Melanie Wood 
earned the highest score in the nation on the U S A M O . The next 
year she convinced most of the top finishers to wear tuxedos to 
the State Department dinner, and she wore a flowing white satin 
gown. In their picture with Albert Einstein, the U S A M O winners 
look like kids at their high school prom, their faces lit up with ex
citement and triumph, about to celebrate the most festive day of 
their lives. 

But for the country's best young mathematicians, the State 
Department dinner is an overture, not a finale. The real competi
tion is just beginning. 
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O n the morning of July 8, in the dorm rooms of George Mason 
University, many of the 473 competitors at the Forty-second 
Olympiad lay awake in bed, staring into the predawn darkness. 
They were as well prepared for the competition as they could be. 
They had been training for the Olympiad for months and years 
— for their whole lives, really. But now they knew that any lapse 
— a momentary loss of focus, a stupid mistake, a panic-stricken 
failure to perform — could mean the difference between success 
and failure, between acclaim and disgrace. 

By 8:30 the competitors had eaten breakfast and were walk
ing toward the Patriot Center, a ten-thousand-seat basketball 
arena on the George Mason campus. At the arena's south en
trance they paused one last time to shake hands with their team
mates and wish them good luck. Then they made their way to 
the 473 folding tables set up in huge rectangular arrays on the 
arena floor and in the concourses. Each of the tables was covered 
with a white tablecloth. Each bore a bottle of water, a granola 
bar, and a white envelope marked with the words D O N O T 
O P E N U N T I L I N S T R U C T E D T O D O so . The competitors pulled 

out the chairs at their assigned tables and sat down. They jiggled 
their legs, chewed on their hair, gazed absently up toward the 
shadowy rafters. "This is going to be very loud," called a middle-
aged woman in stretch pants and a purple sweater from the first 
row of seats, holding up an air horn. "You might want to cover 

38 



d i r e c t i o n 39 

your ears." Then she raised the air horn as high as she could and 
let loose a blast that echoed from the roof, reverberated through 
the concourses, and carried into the parking lots and woods out
side. 

The Olympians ripped open the envelopes and took out a 
single sheet of paper. On that sheet were three mathematical 
problems. The first involved a circle and a triangle, the second a 
short algebraic inequality, and the third a group of boys and girls 
taking a math test. An unmistakable sigh of relief issued from the 
competitors. These problems didn't look that hard. Maybe this 
test wasn't going to be the nightmare they'd heard it could be. 

The Olympians were wrong about the test. Most profes
sional mathematicians would not be able to solve these problems 
in the four and a half hours available to the Olympians. 

V 
In January 1657 an unusual letter arrived on the desks of many 
of the leading mathematicians of Europe. Later referred to as 
"Two Mathematical Problems Posed as Insoluble to French, 
English, Dutch, and all Mathematicians of Europe by Monsieur 
de Fermat, Councillor of the King in the Parlement of Toulouse," 
the letter challenged the mathematicians to solve two specific 
problems: one involving possible ways of evenly dividing a cubed 
number; the other, possible ways of evenly dividing a squared 
number. In spirit the problems were not much different from the 
problem that would later become known as Fermat's last theo
rem. 

The letter set off a ferocious tussle among Pierre de Fermat's 
correspondents. Some dismissed the problems as unimportant. 
Others sought to solve them and failed. After a lengthy and 
sometimes acrimonious correspondence, Fermat grudgingly 
acknowledged that he had received several solutions, yet he 
couldn't resist stoking the international rivalries of the day. "The 
French will say that the English satisfied the proposed prob-
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lems," he wrote to a friend. "But let the English say in turn that 
the problems were worthy of being proposed to them and let 
them not disdain in the future to examine and investigate more 
closely the nature of integers." 

In the seventeenth century, personal challenges were com
mon in mathematics. At a time when many mathematicians were 
still amateurs (Fermat, for example, was a lawyer and jurist), 
they could make their reputations by solving problems that no 
one else had been able to solve. Many famous scholars of the 
time, including Isaac Newton and Rene Descartes, posed and 
worked on challenge problems. Many kept their procedures se
cret to maintain an advantage over their rivals. 

In the eighteenth and nineteenth centuries, mathematicians 
gradually adopted the more decorous procedure of publishing 
their results in books, monographs, and journals. Yet the prob
lem-solving tradition remained strong in some parts of Europe, 
especially as a way for young mathematicians to develop facility. 
Eastern Europe, in particular, remained a hotbed of mathemati
cal competitions. In 1894, for example, a high school teacher in 
Hungary named Daniel Arany began publishing a student maga
zine called KoMaL (an acronym for "High School Mathematics 
Journal" in Hungarian). Each issue presented ten to twenty chal
lenging problems that students were invited to solve, and Arany 
received hundreds of solutions each month in reply. Not coinci-
dentally, many of the most accomplished mathematicians of the 
first half of the twentieth century came from eastern Europe — 
including many Jews fleeing Nazi Germany who came to the 
United States and made major contributions to the Allied war 
effort. 

Since the end of World War II, problem-solving competi
tions as a form of mathematics education have spread around the 
world. But many of these competitions continue to have an east
ern European flavor. The coach of the U.S. Olympiad team in re-
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cent years is a case in point. Titu Andreescu, director of the 
American Mathematics Competitions in Lincoln, Nebraska, is a 
Romanian emigre. He is a tall, stocky bear of a man with a salt-
and-pepper beard and eyes so black they seem bottomless. Titu's 
mother was born in New York City shortly after her family emi
grated from Romania. But she returned to Romania as a child, 
was raised there, and married a Romanian man. Born in the 
1950s, Titu was an avid mathematician as a child and was on the 
Romanian Olympiad team in 1973. But the government kept 
close tabs on him. Because his mother had retained her U.S. citi
zenship, Titu and his mother were viewed as possible defectors. 
Government officials assumed that if they ever left the country 
they would not return. 

By the late 1980s Titu had become an assistant coach of the 
Romanian Olympiad team and was editor of a prestigious math
ematics journal in Timi§oara, Romania's second largest city. But 
he was restless. Mathematics had given him a way to ignore the 
numbing repression of life in a Communist country, but outside 
of his work he felt trapped. The system found a slot for people 
and kept them in it. In a society grown rigid with dogma, there 
were few ways to excel. 

Suddenly, in late 1989, the Communist bloc began to col
lapse, and Titu's opportunity arrived. " M y mother and I decided 
to leave," he says. "The government knew that I would eventu
ally defect. I did." 

He found a job teaching mathematics at the Illinois Science 
and Mathematics Academy, a residential high school for aca
demically advanced kids in suburban Chicago. A couple of years 
later he volunteered to help coach the U.S. Olympiad team in the 
summers. In 1994, shortly after Titu became an assistant coach, 
the U.S. team did something that no team from any country had 
ever done before. At the Olympiad in Hong Kong, all six mem
bers of the team received perfect scores on all six problems — 
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thirty-six perfect solutions. "The journalists wrote about me like 
I was the Bela Karolyi of high school mathematics," Titu recalls. 
The next year he became head coach of the team. 

Titu is the person who oversees the various tests that culmi
nate in the selection of the U.S. Olympiad team. But he also has a 
more specific task. Every summer he directs the Mathematical 
Olympiad Summer Program, a four-week training camp for the 
six members of the U.S. team and a select group of other high 
school students who hope to make the team in future years. For 
kids interested in competitive mathematics, being invited to the 
summer program — even if you're not on that year's team — is a 
great honor. 

Most summers the program takes place in Lincoln, where 
the American Mathematics Competitions offices are located and 
where the students "won't be distracted by a big city," as Titu ex
plains. But the summer before the Forty-second Olympiad, the 
training camp was instead held at Georgetown University, a few 
miles up the Potomac River from the Washington Monument. 
For four weeks the six Olympians and about two dozen other tal
ented high schoolers lived in the Georgetown dorms and worked 
on mathematics. Between the undergraduates who stay to take 
summer classes and the high school kids attending camps, a col
lege campus can be a surprisingly busy place in the summer. 
Amid the aspiring basketball players, ballerinas, and thespians, 
the math students were fairly inconspicuous — a clump of kids 
wearing Mathcounts T-shirts making their way to and from the 
cafeteria. 

The group quickly settled into a routine. Each morning and 
afternoon they congregated in one of the lecture halls on campus. 
At precisely 9:00 A . M . or 1:00 P.M., Titu or one of the other in
structors would stride into the room, usually coming directly 
from the photocopy machine. Titu sometimes delivered a mini-
lecture on a particular subject — combinatorics, for example, or 
inversions in the plane, or an even more obscure topic. But Titu is 
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not a loquacious person, and his lectures never lasted long. Soon 
he would pull a sheaf of papers from his valise and pass them 
through the hall. These were the problems for that session. 

The students were not prohibited from working together on 
the problems. Some preferred to solve as many problems as they 
could before seeking help on the others, while other students in
stantly teamed up. Soon the room divided into shifting clusters of 
bobbing heads as students compared approaches and solutions. 
Eventually Titu began to make his way up and down the rows, 
asking students if they were making progress. Sometimes he of
fered a few words of advice; sometimes he just listened, nodding 
his head. 

After a half hour or so, Titu returned to the front of the 
room and asked for volunteers to solve the problems. One by one 
the students went to the board and sketched out their solutions. 
Though it would be hard to find a more competitive group of 
high school students, they readily praised one another's work. 
"That's nice," they'd say. " I like that." Titu was more sparing 
with his praise. "Good work," he'd say, and the student at the 
board would blink with surprise. 

About halfway through the training camp, a camera crew 
from the CBS show Sunday Morning filmed the students for a 
couple of days. "Just pretend we're not here," said the producer, 
even though the cameraman spent the rest of the morning with 
his lens six inches from the students' faces. But the kids did a 
pretty good job of carrying on as usual; maybe a generation 
raised on cable television is not flustered by the idea of their every 
move being videotaped. 

The next day the six team members met with the on-air in
terviewer, Bob Orr. They endured with good humor the usual 
goofy questions. "What does a math wizard do to relax?" "What 
do you think about people who look at guys like you and say, 
'Hey, these guys are nerds'?" At one point Orr asked if they 
knew any math jokes that most people wouldn't understand, and 
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Gabriel Carroll, a high school senior from Oakland, California, 
offered the following story. 

Two mathematicians sitting in a restaurant are arguing over 
whether ordinary people know anything about mathemat
ics. The optimistic one says, "Most people know plenty of 
math." The pessimistic one says, "No they don't, people are 
completely ignorant." At that point the pessimist has to go 
to the bathroom, so the optimist calls their waitress over to 
the table and says, "When my friend comes back, I'm going 
to ask you a question, and I want you to reply 'One-third 
x cubed.' Okay?" The waitress says, "One-third x what?" 
And he says, "One-third x cubed." So the waitress walks 
away muttering, "One-third x cubed, one-third x cubed." 
When the pessimist returns, the optimist says, " I want to 
prove to you that ordinary people know mathematics." He 
calls the waitress over and says, "Excuse me, can you tell me 
the integral of x squared Jx?" And she says, "One-third x 
cubed." Then, as she's walking away, she calls back, "Plus a 
constant." 

Everyone on the team laughed. " I don't get it," said Orr. 
(For a note on the source of the humor in this joke, see the ap
pendix.) 

The Sunday Morning segment aired a few days after the 
conclusion of the Olympiad and was a remarkably good piece of 
journalism. The students came across as real human beings, not 
stereotypical nerds. The segment even showed some of the prob
lems on that year's Olympiad. Yet running beneath the narrative 
like an annoying hum was a constant, unstated question: What 
kind of person could possibly want to spend four weeks of the 
summer cooped up in a lecture hall studying math? 

V 
Most adults in the United States probably remember very little 
about the math class they took in the eighth grade. But if you 
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want to relive the experience, here's a sure-fire way to do so. 
Get the videotape "Eighth-Grade Mathematics Lessons: United 
States, Japan, Germany" from the U.S. Department of Education 
and pop it into a videocassette player. 

There it is again — an experience almost every adult Ameri
can has endured. The teacher is asking, "Complementary angles 
add up to what?" The students are propping up one arm with the 
other and calling out answers. They stare down at their books or 
off into space. They appear resigned to serving out their time, as 
if a punch clock were mounted beside the door. 

The tape was made as part of the Third International Math
ematics and Science Study, or TIMSS, a massive research proj
ect conducted in the mid-1990s. In the fall of 1994 a Los An
geles-based videographer spent seven months driving across the 
United States, visiting eighty-one junior high and middle schools 
along the way. At each stop he set up his camera and recorded a 
single eighth-grade math class. He then dropped each tape into 
an envelope and mailed it to James Stigler, a professor of psychol
ogy at the University of California at Los Angeles. 

In a basement conference room at U C L A , Stigler and his col
leagues in the psychology department eagerly viewed the tapes as 
soon as they arrived. They had no idea what to expect. No one 
had ever tried to videotape a large sample of everyday classes like 
this. For all they knew, the classes might be so varied that the 
tapes would yield nothing of value. After all, in the United States 
local control of education is sacrosanct. Districts and states have 
different curricula; teachers have different backgrounds; schools 
serve all kinds of communities, from small towns to inner-city 
ghettoes. And Americans seem perfectly willing to let teachers 
maintain a "don't tread on me" philosophy. When teachers go 
into their classrooms and shut the door, they are free to teach 
the curriculum more or less as they see fit. 

Stigler might have been expecting diversity, but what he 
found was exactly the opposite. Each taped lesson followed more 
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or less the same basic script. The teacher usually began by re
viewing material covered in previous classes, often by checking 
homework. He or she then demonstrated the mathematical pro
cedure being studied that day, such as multiplying fractions or 
calculating areas. Students were given a worksheet containing 
exercises, which they began doing. Near the end of the class, 
some of the seatwork was checked and homework was assigned. 

What was missing from the classes was almost as obvious as 
what was present. Students almost never worked on challenging, 
multistep problems. The exercises they did usually required just a 
few seconds of routine thought or calculation. In not one of 
the eighty-one videotaped eighth-grade math classes did the stu
dents work their way through a mathematical proof. Instead, 
they memorized formulas and learned how to apply them. Unlike 
the Olympians, who use what they know to explore new terri
tory, the students in the tapes were mostly practicing procedures. 

Stigler and his colleagues also arranged for eighth-grade 
mathematics classes in Japan to be videotaped, and there they 
observed quite a different script. After a short introductory 
lecture, the Japanese teacher usually presented a fairly difficult 
problem and did not tell the students how to solve it. Students 
then worked alone or in small groups to come up with a solution, 
while the teacher wandered from group to group to ask ques
tions and offer advice. After ten or fifteen minutes the teacher 
called on various students to come to the board and present their 
answers to the class. If a student seemed to falter, the teacher of
fered advice or discussed related mathematical concepts. 

This procedure may sound familiar, because it is almost ex
actly what the Olympians do in their training camp. And for 
both the Olympians and the Japanese, the problem-solving ap
proach works. In international comparisons of mathematical 
achievement carried out as part of TIMSS, U.S. eighth-graders 
were decidedly mediocre, ranking slightly below the average of 
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the forty-one participating nations. Only seven countries scored 
significantly lower than the United States: Colombia, Cyprus, 
Iran, Kuwait, Lithuania, Portugal, and South Africa. Japan and 
three other Asian countries — Korea, Singapore, and Hong 
Kong — led the rankings. 

For the past several years, Stigler and his colleagues have 
been analyzing their videotapes at a facility called the Lesson Lab 
— a converted warehouse on Santa Monica Boulevard just a 
couple of miles from where old Route 66 runs into the Pacific 
Ocean. Inside the lab, rows of technicians at bright-colored 
iMacs translate and transcribe the lessons and store the images 
and dialogue on the lab's central computer. Then education re
searchers from around the world pore over the digitized lessons 
second by second, seeking to find order in the messy, compli
cated, intensely human act of teaching. 

Stigler doesn't blame American math teachers for the lack
luster performance of their students. O n the contrary, he points 
out something apparent in all the tapes. The teachers are work
ing extremely hard. They are joking with the students, dealing 
with interruptions from the public address system, gesticulating 
at the blackboard, straining to add flavor to material that many 
of them realize is pretty thin gruel. It seems obvious, after watch
ing the tapes, that teachers' complaints about being exhausted at 
the end of the day are fully justified. 

The problem with U.S. math instruction, says Stigler, lies not 
in lack of effort by teachers but in the expectations and ingrained 
behaviors of both teachers and students. The people in a class
room might not realize it, but they are caught up in a cultural ac
tivity as rigid and preordained as a religious service. Their behav
ior is not learned from a book or from teacher education classes. 
It is learned through experience, starting at a very early age. As 
Stigler and his colleague James Hiebert point out in their book 
The Teaching Gap, what happens in a classroom is like what 
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happens at a family meal. Everyone has certain expectations 
about how the food will be served, how conversations will be 
carried out, and what behaviors are and are not appropriate. 
People would be startled if Mom handed out a menu at the be
ginning of the meal or if Dad presented a bill with dessert. Dinner 
plays out according to a cultural script that everyone knows. 

Because teaching is a cultural activity, it is extremely resis
tant to change, Stigler says. "Cultures represent compromises be
tween the desired and the possible. And the cultural routines that 
have been created are compromises that have developed over 
years and years. For that reason, they are overly determined, 
which means that there's not just one reason why things are the 
way they are, there are hundreds of reasons why things are the 
way they are. And even if you can change one of those reasons, 
the other ninety-nine come back and try to make things the way 
they were." 

Think, for example, about what takes place when an Ameri
can math teacher asks a simple question, something like, "What 
is the angle complementary to 84 degrees?" If some student in 
the class doesn't answer within a few seconds, the teacher starts 
to get nervous. Teachers in the United States believe that their re
sponsibility is to lead their students in tiny steps, with continual 
review and reinforcement, from simple counting in grade school 
all the way to precalculus, calculus, or statistics. If some students 
can take those steps faster than others, they should be taught sep
arately. But in any math classroom, if students can't answer a 
simple question involving one of those steps, the chain of un
derstanding is in danger of being broken. The teacher had better 
go back and cover the material again until everyone has memo
rized it. 

In Japanese classrooms, in contrast, teachers want their 
students to struggle with problems, because they believe that's 
how students come to really understand mathematical concepts. 
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Schools do not group students into different ability levels, be
cause the differences among students are seen as a resource that 
can broaden the discussion of how to solve a problem. Not all 
students will learn the same thing from a lesson; those who are 
interested in and talented at math will achieve a different level of 
proficiency from their classmates. But each student will learn 
more by having to struggle with the problem than by being force-
fed a simple, predigested procedure. 

Stigler believes that the only way to change U.S. math edu
cation is to reveal the hidden assumptions that constrain students 
and teachers. At the Lesson Lab he and his colleagues are compil
ing an extensive videotape library of actual lessons that have 
been analyzed by teachers and education researchers. They want 
teachers to use the videos as jumping-off places for what Stigler 
calls "lesson study." Groups of teachers would analyze the teach
ing of a specific task, such as adding fractions. They would do re
search to understand their students' cognitive abilities and differ
ent approaches to teaching that particular task. Then they could 
disseminate the results of their study to other teachers. 

"The basic idea behind changing a cultural practice is bring
ing it to awareness," Stigler says. "That's what lesson study does 
— it brings to awareness the kinds of practices in which you're 
engaged. Once you do that you can start to make some decisions 
about whether you want to make a change. But if current prac
tice isn't brought into awareness, when you try to implement a 
new practice it gets modified by existing practices in an uncon
scious way, and you're right back to the way things were." 

V 
Titu Andreescu also believes that high-level problem solving is 
the key to successful mathematics education — not just for the 
best students but for all of them. " In Romania, rather than lec
turing my students I would choose five or six good problems, and 
through those problems students would learn the theory," he 
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says. "Every teacher in Romania was supposed to be teaching the 
same lesson at the same time — it was very centralized. But even 
with those restrictions I succeeded by having a problem-solving 
approach." 

High-level problem solving has many proponents in the 
United States. Since inaugurating a major reform effort in 1989, 
the National Council of Teachers of Mathematics ( N C T M ) has 
been urging U.S. math teachers to emphasize the kinds of prob
lems that require students to think deeply about what they are 
doing. But the cultural inertia of math instruction is very power
ful. The eighty-one classes Stigler and his colleagues videotaped 
in 1994 exhibited virtually no signs of the reforms advocated by 
N C T M . 

In some school districts the N C T M ' s recommendations 
have sparked intense controversy. Parents and some teachers 
have assumed that an emphasis on high-level problem solving 
implies a deemphasis of basic skills like subtracting, multiply
ing, and dividing. The N C T M insists that this interpretation is 
mistaken. The "Overview" of its Principles and Standards for 
School Mathematics states, "Students need to learn a new set of 
mathematics basics that enable them to compute fluently and to 
solve problems creatively and resourcefully." 

The "math wars," as the controversy has come to be called, 
have helped focus public attention on the deficiencies of U.S. 
math education, but the deficiencies aren't going away. Given 
that math teachers already focus largely on "the basics," why do 
U.S. students rank so low in international comparisons of mathe
matical performance? Why does math have a reputation as the 
most dreaded and uninspiring of middle school and high school 
subjects? How many adults remember their mathematics classes 
as enjoyable? 

"In Romania, everybody involved in math loves math, or at 
least ninety percent do," says Titu. " In Romania, when they 
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learn that you are a mathematician, they say, 'I was so good at 
math.' And it is the cab driver who tells you this. 'Math was my 
favorite subject.' That's one reason why the eastern European 
teams do so well, because math is part of the culture. 

"Here, teachers in elementary school and middle school, 
many of them hate math. How can you teach math when you 
hate math? When eight out of ten people in this country learn 
that I am a mathematician, they say, 'Oh, man, I was terrible at 
mathematics.' 

" In order to change this, you need lots of money. A reporter 
once asked me, 'If you had a million dollars, how would you 
change math education?' I said, 'I ' l l answer your question if you 
change that million to a billion.' I think we could do really well at 
mathematics if the United States invested one billion dollars. But 
I think it would take that much money to change the attitude of 
people in this country. 

"You need to retrain the teachers, you have to give them an 
incentive, and if you really want a good program, you have to 
give them a six-figure salary. For good people in academia to 
teach in high school, you need to pay them well. If you have a 
teacher making twenty thousand or thirty thousand dollars a 
year, you can't expect much from that teacher. To expect quality, 
you have to pay more. 

" O r you have another option. You could buy teachers from 
different countries. But it's not going to solve the problem. It's 
going to make it worse, because if we keep importing mathemati
cians, it will hurt the country eventually. Today a third of the 
graduate students in mathematics in America are Asians — not 
Asian Americans, but Asians coming from Asia. 

"You also need to get rid of these," Titu said, plucking 
a thick calculus book from a nearby shelf. "This is a weapon. 
You can hurt somebody with this. Look." He ruffled through the 
book. "This has thirteen hundred pages, including appendixes. 
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One thousand three hundred pages — a calculus book! I learned 
calculus from a two-hundred-page book, but it was of very high 
quality. I can't find such a book here. If you open this book at a 
certain page — look at this, exercise after exercise, look how wa
tered-down this is. Why? Because this book costs eighty-five or 
ninety dollars. The book I learned from cost a few dollars." 

V 
Paul Zeitz, now a professor of mathematics at the University of 
San Francisco, was a member, along with Eric Lander, of the U.S. 
Olympiad team that competed in Erfurt, East Germany, in 1974. 
He's not in touch with his former teammates anymore, though 
occasionally he hears about them through the grapevine. One, 
a biostatistician working on environmental issues, lives on an 
ashram in northern California. Another is a software engineer in 
Berkeley. A third died in a fall from a tree shortly after returning 
to the United States from Erfurt. 

Zeitz works in a cluttered, windowless office in a building 
that must have one of the best views in all of America — east to 
downtown San Francisco, north to the Golden Gate Bridge and 
Marin County, and west past Golden Gate Park to the all-em
bracing Pacific. He grew up on the opposite coast, in New York 
City, where he was captain of the Stuyvesant math team the year 
after Lander was. He had never been on a plane when he boarded 
the flight for Germany. He turned sixteen during the trip. "The 
Vietnam War was going on, and that happened to be the first 
year that Vietnam came to the I M O , " he recalls. "We met their 
team not long after we got there — some of them could speak 
French, so we communicated that way. I remember we shook 
hands. We were all very polite. 

"Our coach told us to bring Frisbees, because back then no 
one outside the United States had ever seen a Frisbee before, and 
that really worked; we played a lot of Frisbee with the other 
teams, and you could tell a lot about the other teams by how they 
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played Frisbee. The guys from East Germany just wanted to 
tackle each other — they thought that was fun. The Russians 
never did figure out how to throw it — they'd just fling it over
hand as far as they could. But the Vietnamese guys, they hung 
back and watched us for a long time, and when we finally talked 
them into throwing the Frisbee, they threw it perfectly level. 
They'd been watching us and learning how to do it. I figure that's 
why we lost the war." 

Zeitz went to Harvard after high school but was turned off 
by the impersonal teaching of math there. Gradually he got inter
ested in history and decided to major in the subject. But he also 
did some math tutoring in college and enjoyed it, so after col
lege he applied for jobs as a math teacher around the country. 
After spending one year at a progressive private school in San 
Francisco, he took a job at a boarding school in Colorado 
Springs, where he taught math for five years. " I got a lot of expe
rience there," he recalls. "Private schools are different from pub
lic schools. I could invent my own curriculum and do what I 
wanted." 

Zeitz was always interested in applying the problem solving 
he'd done as an Olympian in his teaching. So he began to develop 
a series of tough mathematical challenges that his students would 
work on for extended periods. He found that this approach often 
engaged the least talented kids just as much as the most talented. 
" I usually had a class of kids who had been labeled gifted and an
other class that was essentially considered to be boneheads. And 
my experience with those classes exactly matched a story I once 
heard. Two classes like that were asked, 'If you had a bathroom 
scale and a giraffe, how would you go about weighing him?' The 
gifted kids got all flustered trying to figure out a way. But one of 
the kids in the class of boneheads said, 'Well, you'd take a chain 
saw and cut him up.' 

"That's exactly what you need to be good at this kind of 
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mathematics. The same sorts of things that make some people 
good problem solvers are the kinds of things that cause kids to 
have behavioral problems. You have to figure out a way to re
ward the breakdown of inhibitions. Of course, it has to be done 
constructively — you don't want anarchy in the classroom. But 
teachers have to become more comfortable with group activity, 
with brainstorming, with letting kids make mistakes. You have 
to go on adventures and not worry about the consequences." 

Introducing high-level problem solving into the classroom, 
Zeitz discovered, helped resolve many of the shortcomings he 
had encountered in U.S. math education. It kept the talented kids 
from being bored while offering everyone welcome relief from 
the endless stream of procedures. It captured the interest of kids 
who liked to use their brains for more than just memorizing. It 
justified the need for better teacher training, because teachers 
need to be able to keep up with their students' mathematical ex
plorations. 

Zeitz did a lot of rock climbing and hiking in Colorado, and 
in the mid-1980s, pursuing a growing interest in geology, he en
tered a graduate program in geophysics at the University of Cali
fornia at Berkeley. But he found himself ever more attracted to 
the mathematical aspects of geology, and in 1987 he changed his 
course of study to mathematics. He got his Ph.D. five years later 
and immediately landed a job at the University of San Francisco, 
which was looking for a math professor with teaching experi
ence. 

There he began working on The Art and Craft of Problem 
Solving, which was published in 1999. It's a challenging book — 
many math Olympians use it to prepare for the competition. But 
Zeitz uses it with all the students in his classes — including those 
studying to be teachers — often by breaking them up into teams 
and letting them work on specific problems for days at a time. 
"The level of the math is not really an issue," he says. " M y main 
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goal when I teach this kind of course is to inspire my students 
to really think hard. It sounds simplistic, but that's all there is 
to it. I want to get students used to a mindset that a problem 
that is worth solving is worth pondering for a long time. It's 
hard to train somebody how to think for a long amount of time. 
Most people think in maybe five-second bursts. I'm talking about 
spending days thinking about something. So the level of the math 
is less an issue than is rewiring their brains so they can concen
trate better." 

Rewiring the brains of students is an ambitious goal, Zeitz 
admits. But it can be done by demonstrating that math is not 
what people think it is. "To be good at math you have to be both 
rigorous and a good explorer," he says. "And this exploration, 
this organized play, that's what people don't understand about 
math — it's a very social activity." 
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3. i n s i g h t 

Tiankai Liu was one of the Olympians who was relieved to see 
the first I M O problem. It was a geometry problem, and Tiankai 
considered himself a pretty good geometer. Here it is: 

I n acute triangle ABC with circumcenter O and altitude AP, an
gle C is greater than or equal to angle B plus 30 degrees. Prove 
that angle A plus angle COP is less than 90 degrees. 

This problem would not have seemed unfamiliar to the an
cient Greeks. The Greeks were the first to show that for every tri
angle, a circumcircle can be drawn that passes through all three 
vertices. And the Greeks were the first to think about geometry 
as an abstract enterprise, separating it from its roots in survey
ing and measurement. Earlier civilizations had developed consid
erable geometric knowledge; the Egyptians and Babylonians 
used the results of the Pythagorean theorem more than a thou
sand years before Pythagoras lived. But Pythagoras was the first 
to make that knowledge into a theorem, and in doing so he 
loosed mathematics from its earthly bounds. 

Most people would probably consider this first problem 
fairly opaque, but as Olympiad problems go, it's straightfor
ward. It starts with a triangle that has vertices labeled A, B, and 
C . The circumcenter — the center of the circle drawn around the 
triangle — is labeled O. According to the problem, a single line is 
drawn from one vertex of the triangle — the one labeled A — to 
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a point called P on the opposite side of the triangle. The rest of 
the problem simply involves the sizes of the angles defined by the 
five points A, B, C , O, and P. 

The first thing Tiankai needed to figure out was how the five 
points fit together. So he took the compass and straightedge that 
the Olympians are allowed to bring to the test and drew the 
following diagram, which includes all the pieces of the problem. 

The "altitude A P " is the line starting at A that extends to 
point P on the line C B . It's called an altitude because it meets line 
C B at a right angle (the little square at the base of line AP indi
cates that angle APB is 90 degrees). Angles A, B, and C are simply 
the three angles that make up the triangle. (In other words, the 
angle A B C can simply be called angle B, a shorthand that Tiankai 
used throughout his solution.) The problem says that angle C (or 
BCA) is at least 30 degrees larger than angle B. Tiankai needed to 
prove that angle A plus angle C O P is less than 90 degrees. 

One of the tricks in solving Olympiad problems is not to let 
your mind get locked into a potential solution too quickly, be
cause you can waste a lot of time going in the wrong direction. So 
Tiankai let his thoughts wander. He continued line C O to the op
posite side of the circle and looked at the angle B C O , but that 
didn't seem to take him anywhere. Then he drew a line starting at 
B and passing through O to the opposite side of the circle. It 
made for a pretty diagram, but that approach also didn't seem to 
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hold much promise. He needed some sort of insight, a way of 
viewing the problem that would reveal how to solve it. 

"The thing I was motivated by was that thirty-degree num
ber," says Tiankai. " I knew I had to do something with that, but I 
didn't know what. So I just sat there for a while. I wasn't ner
vous. I knew I'd come up with something." 

V 
Tiankai's calmness was one of the first things an observer would 
note about him — not because anyone would have expected him 
to act otherwise, but because he was by far the youngest member 
of the team. The other five were all high school graduates who 
would be going to college in the fall. Tiankai had just finished his 
freshman year at Phillips Exeter Academy in New Hampshire. 
A foot shorter than most of his teammates, he was so skinny 
and small that he looked like someone's kid brother. When the 
Olympians from other countries saw the U.S. team walking to
gether, they often asked, "Is that kid a member of your team?" 
When told that he was, they shook their heads in disbelief. 

Tiankai tried to ignore comments about his age. Though not 
one to back down from any challenge, he tends to deflect atten
tion from himself. He often holds his body a bit sideways, as 
if the world strikes him as slightly absurd and he's watching it 
with amusement. Though proud of his mathematical abilities, 
he doesn't want to give the impression that he's working too 
hard. Sometimes he erects a psychological shield around him
self by harshly belittling his achievements. " I used to like chess 
a lot, but I wasn't particularly good at it — I was like fifteenth 
in some state competition in elementary school," he says. " I 
also did some computer programming, but maybe that's because 
both my parents are computer software engineers. And I play 
the piano. I wish I wasn't so lazy and practiced more, but still I 
like it ." 

Tiankai was born in Shijiazhuang, a city about two hundred 
miles southwest of Beijing. Like Melanie, he displayed a remark-
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able interest in mathematical concepts from a very early age. 
"We used to take a long walk after dinner when Tiankai was 
about one and a half years old," recalls his mother, Kaining Gu, 
"and Tiankai was extremely interested in the sizes and shapes of 
the manhole covers on the ground. When he discovered a new 
cover, he would become very excited. His eyes would open wide, 
his breath would get short, and he'd call out in Chinese: 'Circular 
cover, square cover, big cover, small cover, big circular cover.'" 

In 1989 Tiankai and his father left their homeland to join 
Tiankai's mother in Darmstadt, West Germany, where she was 
taking graduate courses. A year later the family immigrated to 
the United States and settled in San Jose, California, where 
Tiankai's parents both found work as software engineers. 
Throughout this period Tiankai continued to be fascinated by 
mathematics and by games with a mathematical edge. "His ran
dom drawings were usually full of a matrix of numbers," his 
mother says. "At his fourth birthday, a friend of ours sent him a 
chess set, and he soon learned how to play. That time we were in 
Darmstadt, and we used to take a walk to a nearby park to watch 
people playing chess. A chess coach in the town once wrote an 
article about Tiankai. He was impressed that at such a young age 
Tiankai had learned how to plan attacks." 

In San Jose, Tiankai attended the public schools and took 
more or less the same math classes as everyone else his age. But 
his abilities soon attracted attention. His mother remembers that 
once when Tiankai was in kindergarten, as they were walking to 
the park, some older students in his school stopped and asked 
him some math questions, which he answered. She also heard 
that he was pointing out mistakes made by his teachers in class or 
in his textbooks. "Often during the parent-teacher conferences 
his teachers would ask us if his math capability was by nature or 
by learning. They would ask me if he had any tutoring at home. 
The fact is that we have never paid anyone to teach him math. He 
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loves it and he learned a lot of it by himself. I'd say it's a mixture 
or interaction of the two ingredients — one from nature, the 
other from learning." 

Tiankai attributes at least part of his interest in math to an
other factor. Like every other member of the U.S. Olympiad 
team, Tiankai speaks perfectly inflected, slang-filled English. But 
in elementary school he felt less confident about his English. At 
home he speaks Chinese with his parents, and he still reads many 
books in Chinese. " I wasn't superduper in English, partly be
cause my parents didn't know English very well," he says. "So I 
decided that maybe I could do math." 

In 1998, when Tiankai was in seventh grade, his parents 
read an article in the San Jose Mercury News about a group of 
mathematicians who were organizing a series of math circles in 
the San Francisco Bay area. Math circles are another import 
from eastern Europe and Russia, where for more than a century 
mathematics professors have organized afterschool math groups 
for nearby secondary school students. This tradition is one of the 
reasons for the rich history of problem solving in those countries. 
Math circles also contributed to the founding of some of the high 
schools specializing in math and science that still train many 
eastern European and Russian Olympians. 

The Bay Area math circles had several organizers. One was 
Paul Zeitz, who was then just finishing up The Art and Craft of 
Problem Solving. Two others were Tom Davis, who cofounded 
Silicon Graphics, and Brian Conrey, executive director of the 
American Institute of Mathematics in Palo Alto, a privately 
funded organization that supports cutting-edge mathematical re
search. And the most active organizers were two female mathe
maticians: Zvezdelina Stankova, of Mills College and the Uni
versity of California at Berkeley, who was on the Bulgarian 
Olympiad team in 1987 and 1988, and Tatiana Shubin of San 
Jose State University. 
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" I was brought up and educated in the old Soviet Union," 
says Shubin, "so I had a different perspective on mathematics. 
When I was growing up, everybody knew that the smartest kids 
on the block were doing mathematics, and we were very well re
spected. We weren't math freaks, we were smart kids, and even 
people who weren't interested in mathematics would respect us. 
It was very different when I came to this country. Whenever 
someone asked what I was doing and I said mathematics, people 
would immediately shrink from me, as if I had said something 
unpleasant. I couldn't understand that. 

"And then when my daughter started school I had another 
shock. I remember when she was in maybe the third grade I was 
looking at her homework problems, and they were just painting 
bubbles rather than doing mathematics. I went to the principal to 
talk about this, and the principal was absolutely appalled when 
I told him that the kids were not using parentheses properly 
in mathematical expressions. It turns out there was no such thing 
as mathematical expressions as far as this principal was con
cerned. 

"From that point on I decided I wanted to do something for 
the kids in this country, and especially for the bright kids, be
cause I noticed that the system was going out of its way to help 
underachievers and was doing nothing to help overachievers." 

The first San Jose math circle was held in November 1998. 
"We had about thirty kids," says Shubin. "We had no idea where 
they came from, because we didn't screen them. Zvezda gave that 
first lecture, and she explained inversion in the plane, which isn't 
a trivial thing for kids of that age, and then she gave them some 
problems and maybe five minutes at the most to work on them. 
Then she asked whether anyone would be willing to show a solu
tion. And this little guy — he looked much younger than he was 
at the time, he was very small for his age — went up to the board 
and showed his solution, and it was a real solution. There was 
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nothing wrong with it, and he presented it in a very nice and con
cise form. It was Tiankai, of course. That was when we knew we 
had some very good kids there. 

"The next lecture was on elementary number theory, a com
pletely different subject, and it was given by Brian Conrey. He 
started by introducing lots of notation. I've taught number the
ory here at San Jose State several times, and I know that to swal
low all that notation and get used to it takes time, even for stu
dents at the college level. Brian asked if any of the kids had seen 
that notation before, and none of them said they had, so I'm sure 
they were seeing it for the first time in their lives. Then Brian in
troduced Fibonacci numbers and explained what they were, and 
he asked the students to prove that the fifth Fibonacci number di
vides every fifth Fibonacci number after that. * He gave them two 
or three minutes and then asked whether anyone had solved the 
problem. Someone from the very back of the room, very quietly, 
but loud enough for people to hear, said, 'I think it can be gener
alized.' Brian asked, 'In what form?' And this boy said, 'I think 
the rath Fibonacci number, for any m, divides the (m times n)th 
Fibonacci number, for any Brian said, 'Well, how would we 
go about proving something like that? Let's try some examples.' 
But he was really just dragging his feet because he was trying 
to solve this problem. And then Tiankai — it was Tiankai, of 
course — said, 'Yes, but I can prove it.' And he marched to the 
board and proved it beautifully, with no errors. From that day on 
we knew we had a real star in that class. There wasn't a single 
math circle where he didn't do something unusual or hard. 

"We also had, together with these circles, a series of lec
tures given by first-class mathematicians for bright high school 

* Fibonacci numbers are generated by adding the two previous numbers in a par
ticular sequence to get the next number. By convention the first two Fibonacci 
numbers are 1, so the third is 2; F4 is 3, F5 is 5, ¥(, is 8, and so on. Conrey was 
asking the students to prove that F$ evenly divides f io , F15, F20, and so on. 
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students. We had three in the fall and three in the spring, and 
Tiankai was at each of those lectures. At the very end of the 
1998-99 school year an additional lecture was given by Andrew 
Wiles, who solved Fermat's last theorem. It was hosted by the 
American Institute of Mathematics and the mathematics depart
ment of Stanford University and was held at Stanford, in a big 
auditorium that seats more than seven hundred people. All of the 
students involved with the math circles got free tickets, but there 
were also lots of adults from all over the Bay Area — I recog
nized people from Berkeley and even farther away. The audito
rium was absolutely packed. At the end of the lecture two micro
phones were installed in the aisles, and people were told that if 
they had a question they should stand in line at one of these mi
crophones and they would be given a chance to ask their ques
tion. I was more than a little surprised to see Tiankai go to one of 
those microphones. He was the last person to ask a question, be
cause I think he was shy and didn't want to get in front of any 
adult. But he patiently stood at the end of this huge line, and his 
was the most interesting question asked that entire evening." 

Tiankai participated in Mathcounts in the seventh grade 
and finished fifth in the nation. The next year, as an eighth-
grader, he finished first in the written portion of the test but 
got knocked back to second during the head-to-head competi
tion. Eighth grade also was important for Tiankai because he left 
the public school system that year and entered a private school in 
the San Jose area. His experience there was "extremely positive," 
in his mother's words. After two weeks Tiankai's math teacher 
decided that he was wasting time in geometry and moved him 
into a precalculus class for high school students. The school also 
encouraged Tiankai to speak up more, both in class and outside. 
"He's usually a quiet boy," his mother says. 

Tiankai and his parents began thinking about private high 
schools. "Tiankai applied to Andover and Exeter," his mother 
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says. "We liked the rich history and tradition of the schools and 
their strong English and humanities courses — those are what 
Tiankai needed most growing up in an immigrant family." He 
was accepted by both. Then the family learned that one of the 
math teachers at Exeter, Zuming Feng, who also had immigrated 
from China, was a coach for the U.S. Olympiad team. It seemed 
the perfect match, and late in the summer after eighth grade, 
Tiankai boarded a jet bound for Boston. 

V 
Mathematicians have always been fascinated by accounts of pre
cocious mathematical achievements. They all know the story of 
Carl Friedrich Gauss, who was born in Brunswick, Germany, 
in 1777. When Gauss was three, his father was making out a 
weekly payroll when the little boy, peering over his shoulder, 
corrected his addition. When Gauss was ten, the teacher at his 
school decided to keep the students busy by having them add the 
numbers from 1 to 100. Gauss had never seen the problem be
fore, but he immediately figured out a clever way to calculate the 
sum quickly. He wrote the answer on his slate, marched to the 
front of the room, and deposited the slate on his teacher's desk. 
Later in life Gauss liked to recount how his was the only correct 
answer, even though his classmates worked for hours laboriously 
adding number after number. 

This fascination with precocity has subtle but pervasive ef
fects throughout mathematics. The equivalent of the Nobel Prize 
in mathematics is called the Fields Medal, but unlike the Nobel it 
is given only to mathematicians aged forty or younger. One of the 
things that may have sparked John Nash's schizophrenia — so 
ably documented in Sylvia Nassar's book A Beautiful Mind — 
was his fear as he approached his thirtieth birthday that his best 
work might be behind him. An often-quoted passage from A 
Mathematician's Apology, by the English number theorist G . H . 
Hardy, involves age: "No mathematician should ever allow him-
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self to forget that mathematics, more than any other art or sci
ence, is a young man's game." As the French mathematician 
Andre Weil once wrote, "There are examples to show that in 
mathematics an old person can do useful work, even inspired 
work; but they are rare and each case fills us with wonder and ad
miration." 

Actually, a careful study of the mathematics literature dis
proves this stereotype. In her article "Age and Achievement in 
Mathematics: A Case-Study in the Sociology of Science," 
Hofstra University historian Nancy Stern found that mathemati
cians over thirty-five publish just as many papers as do mathema
ticians under that age. And the papers of older mathematicians 
are cited more often than those of younger mathematicians, sug
gesting no decline in quality. 

Women in the profession point out that the myth of the 
young hotshot mathematician is especially damaging to females. 
During their twenties, when most universities and employers 
would just as soon have their mathematicians doing nothing but 
math twenty-four hours a day, women with families have other 
responsibilities. Many women say that they've done their best 
work later in life, after their children were grown. And they point 
to many famous mathematicians who did superlative work their 
whole lives. 

Nevertheless, mathematicians continue to marvel at young 
people who exhibit profound mathematical ability, and this ten
dency can be especially strong at an Olympiad. That someone as 
young as Tiankai can solve such difficult problems doesn't seem 
possible — or entirely fair. No one gets to the Olympiad without 
working extremely hard. Very young people seem not to have 
paid their dues. 

Then again, another theory holds that youth can some
times be an advantage at the Olympiad. According to this line of 
thought, young minds aren't yet cluttered with all kinds of math-
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ematical debris and can cut right to the heart of a problem. 
"Younger students rely a lot on intuition because they don't have 
as much knowledge, and they don't necessarily do as much anal
ysis of what they do," says Alex Saltman, who was on the U.S. 
Olympiad team that went to India in 1996 and who has taught at 
the summer program for the past several years. Young mathema
ticians may not have the sophistication to figure out whether 
their intuitions are accurate, but they can spin out ideas and con
jectures at a ferocious pace. 

This theory has a corollary, which is that younger mathema
ticians often have a particular skill that makes up for their lack of 
experience. Many seem to have an uncanny ability to picture 
mathematical problems in their mind. Their inner vision — liter
ally, in-sight — enables them to manipulate a problem as if it 
were an object lying before them on a table. They can see things 
in their heads that other people cannot, and these images suggest 
ideas that do not occur to the rest of us. 

Some of the world's great creative geniuses had this skill. 
Albert Einstein once said he did not think using words at all. 
Rather, he thought in terms of signs and images, which he could 
move around and recombine at will. Einstein conceived of his 
special theory of relativity by imagining himself traveling at the 
speed of light next to a light wave. He developed his general the
ory of relativity by picturing a man in a box falling down an end
less shaft. 

Other important scientific and mathematical advances orig
inated as vivid mental images. The English physicist Michael Far
aday developed his theories of electric and magnetic fields af
ter envisioning invisible tubes arcing through space. James Watt 
conceived of the steam engine while walking in the country one 
day and picturing in his mind how a cylinder could be connected 
to a condenser. And many great creators outside of science have 
had intense powers of visualization. Michaelangelo reportedly 
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could remember every detail of every piece of art he had ever 
seen. 

Roger Shepard, who is now a Stanford University professor 
emeritus, has been interested in mental images for as long as he 
can remember. In his book Mind Sights: Original Visual Illu
sions, Ambiguities, and Other Anomalies, with a Commentary 
on the Play of Mind in Perception and Art, he writes: 

Beginning in childhood, I vented through endless drawings 
what one of my despairing elementary school teachers 
termed my "feverish imagination." At one stage, my insatia
ble requirements for paper drove me to obtain the unused 
ends of rolls of newsprint from the publisher of the local 
daily paper. These early drawings typically portrayed vast, 
other-worldly vistas whose desolation was here and there 
broken by strange, solitary towers, futuristic vehicles, ma
chines, robots, and much later (and to the extent that my 
skills grew adequate to the task) beautiful women. 

During his career, at Harvard, Bell Labs, and Stanford, 
Shepard did pioneering research on how people perceive objects, 
sounds, and music — work for which he received the National 
Medal of Science in 1995. Yet he kept drawing, fascinated by im
ages that exist in the mind but not in the real world. He drew the 
shifting patterns that appear when one applies pressure to the 
eyeballs. He was especially interested in the images that some
times flash vividly in the mind when one is falling asleep (called 
hypnagogic images) or when waking up (hypnopompic images). 

One of Shepard's hypnopompic images is now familiar to 
many millions of people. As he was waking up on the morning 
of November 16, 1968, he saw in his mind "a spontaneous ki
netic image of three-dimensional structures majestically turning 
in space." He immediately grabbed a bedside pad and jotted 
down an idea for an experiment that would clarify an especially 
thorny problem in cognitive psychology. 
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The image Shepard saw that morning has since been con
verted into a widely used test of mental agility. Here's a sample 
item from such a test; your task is to decide which of the objects 
shown below are identical to the circled object. 

Shepard's original experiment, the results of which were 
published in Science magazine in 1971, explored how people 
make these comparisons. Shepard and his coauthor, Jacqueline 
Metzler, showed sets of three-dimensional block structures to 
people and asked them to determine whether the objects were the 
same. They found that the amount of time a person needed to an
swer the question depended on the extent to which an object had 
been rotated. Apparently, people were rotating the objects in 
their minds to see if they corresponded with the other objects. 
Shepard and Metzler were able to show that the average person 
could mentally rotate an object at about 60 degrees per second. 

These results were a shock to many cognitive psychologists. 
At the time, most of Shepard's colleagues thought that people 
would make such comparisons in a completely different way. 
The reigning view was that mental images were structured the 
same way as language. We might believe we "see" something in 
our minds, but the mental representation of that object was ac
tually just a list of verbally encoded attributes. The image was an 
illusion, a trick. Some psychologists went so far as to claim that 
mental images do not exist. After all, where in our minds does 
the image appear, and who is there to see it? 

Shepard's experiment demolished this argument. If the ob
jects in Shepard and Metzler's experiment were really just lists of 
verbal attributes, then the ability to compare two objects would 
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not depend on how much they had been rotated. People would 
simply compare the attributes of the objects and decide if they 
were the same. But people weren't thinking in words while doing 
a mental rotation test. They were using a different kind of lan
guage, a language of shapes and movements. 

V 
Mathematicians and artists are not the only ones who use mental 
images to solve problems. People use visualization all the time — 
to rearrange the furniture in a room, to decide whether a car will 
fit into a parking space, to estimate the amount of bunting to buy 
for a party, to figure out whether one-fourth or two-fifths is the 
larger number. But not everyone uses mental imagery to the same 
extent or in the same way. 

At Boston College, psychologist Beth Casey and her col
leagues have developed a simple test to determine a person's pref
erences in processing information. Look at the following 
phrase: 

Triangle above circle 

Now turn to page 74 and — without looking back at this page 
— decide whether the image drawn there matches the above 
phrase. Now think about how you decided that question. 

1. Did you memorize the words in the phrase, turn the page, 
and then compare the memorized words to the picture? 

2. Or did you convert the phrase into a picture in your mind, 
turn the page, and compare the image in your mind to the 
picture on the page? 

Casey and her colleagues have found that about half the 
people they test use the first strategy — they tend to rely rela
tively little on mental images. They remember the words, look at 
the image, convert the image into words, and see if the sets of 
words are the same. This first group Casey calls verbalizers. The 
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second half uses the second strategy or some combination of the 
two. They convert the words into an imagined image and then 
compare their mental picture with the real image. These people 
are, in Casey's terminology, visualizers. 

Verbalizers and visualizers solve problems differently, Casey 
says. For example, Casey considers herself a verbalizer. With an 
image from a mental rotation test, she would not imagine the en
tire object and rotate it through space. Instead, she would rely on 
her logical and analytic skills to solve the problem. " I 'd imagine 
myself standing right here on this block," she says, pointing to a 
block in the middle of the object, "and then I'd look around me 
and see what I'd see. So I'm not really rotating the image. That's 
the problem with most tests. People are always able to figure out 
a way to bypass what the test is trying to measure." 

Casey's husband, on the other hand, is an intense visualizer. 
In fact, when his brain is working on an image, she says, he can't 
be bothered to talk. "If you ask him a question when he's doing 
one of these tests, he won't answer, because he says that it breaks 
up the image in his head. In his mind, these two processes are 
competitive. He can't visualize and verbalize at the same time." 

Girls often test lower than boys on measures of spatial abil
ity, but Casey believes that anyone — male, female, young, old 
— can learn to be a better visualizer. (The role of genetics versus 
experience in this gender difference is another focus of Casey's 
research.) In turn, better visualization abilities can give anyone a 
step up not only in math classes but in a wide range of daily 
tasks. "For example, the idea that one-fourth is larger than one-
eighth is a very difficult idea for young students, because the 
number eight is larger than the number four. But if a student 
can visualize what a pizza slice would look like if you had one-
fourth or one-eighth of that pizza, that would help. People who 
don't have that ability can have problems with fractions their 
whole lives." 

For the past several years, Casey and her colleagues Ronald 
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Nuttall and Elizabeth Pezaris have been developing a series of 
story-based lessons for young children that promote the develop
ment of spatial skills. In the story Tan and the Shape Changer, 
children combine triangles to make more complex shapes. In 
Sneeze the Dragon Builds a Castle, they build model castles using 
blocks, culminating in the construction of arches, bridges, and 
towers. "The idea is to use the story to make spatial thinking a 
meaningful activity and therefore a way of approaching math 
problems from the very beginning," she says. 

Better curricula and teaching won't turn everyone into a vi-
sualizer, Casey acknowledges. But careful instructions can help 
people develop the same skills that many mathematicians use to 
solve problems. Of course, most people won't apply their visual
ization skills to the same ends as the math Olympians do. And 
the Olympians have an additional strategy, Casey believes, that 
contributes to their dexterity as problem solvers. They are able to 
look at problems from different and unconventional perspec
tives. "I've known a lot of mathematicians, and I think it's their 
atypical way of thinking that makes them different," she says. 
"They can take information and come at it in a novel way, either 
spatially or analytically. And the truly gifted mathematicians are 
the ones who are good at both spatial and verbal representa
tions." 

V 
As a mathematician, Tiankai considers himself both a verbalizer 
and a visualizer. But the skill that enabled him to solve the first 
Olympiad problem was his ability to see the problem as an im-
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age, an integrated whole, rather than as disconnected lines and a 
circle drawn on a page. 

After looking at his initial sketch for a few minutes, Tiankai 
realized that he needed a few more points and lines to anchor his 
work. So he drew lines from the circumcenter, O, perpendicular 
to lines AP and CB. He labeled the ends of these perpendicular 
lines X and M , respectively. He then drew in a few other useful 
lines, so that his diagram now looked like this: 

Tiankai's task was to prove that angle A plus angle C O P is 
less than 90 degrees, given that angle C is at least 30 degrees 
more than angle B. Point P is the critical factor, he quickly real
ized. As P moves closer to point M , angle C O P gets bigger. But if 
angle C O P is too big, it cannot be added to angle A and still be 
less than 90 degrees. He had to prove that P was sufficiently far 
from M for the condition to hold. 

So what controls the location of point P? It's angle PAO, 
Tiankai soon saw. If he could figure out the size of that angle, he 
would have a good chance of finding out where point P is situ
ated. But how to determine angle PAO? 

He gazed at the problem for a few minutes and then thought 
of something. He could calculate the size of angle C A O and then 
subtract angle CAP. What was left would be angle PAO. 

Figuring out angle C A O was not terribly difficult. Tiankai 
knew that the angles A O C and A B C are related in a particular 
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way. The two triangles have two points in common, C and A. 
Also, point O is the center of the circumcircle and B is on the cir
cumference of the circumcircle. According to a classic theorem in 
geometry, angle A O C is twice the measure of angle B. 

But now look at triangle C A O . Two of its sides are the same 
length, because they are both radii of the circumcircle. Thus 
C A O is an isosceles triangle, which means that two of its angles 
are the same. The angles of any triangle add up to 180 degrees, so 
a little algebra is sufficient to show that angle C A O is equal to 90 
degrees minus angle B. Tiankai was halfway to his goal. 

Now he had to figure out the size of angle CAP. That's even 
easier. One angle of the triangle formed by points C , A, and P is 
90 degrees, and the other angle is ACP, which is the same as angle 
C . So angle CAP is equal to 90 degrees minus angle C . 

At this point Tiankai could calculate angle PAO by subtract
ing 90 - C (the measure of angle CAP) from 90 - B (the measure 
of C A O ) . The two 90s cancel out, and what's left is the follow
ing: angle PAO = C - B. 

Now that's a remarkable result. How can one tell, by look
ing at Tiankai's diagram, that angle PAO is so strictly determined 
by the triangle within which it's embedded? This is the crux of 
the solution, because the problem says that "angle C is greater 
than or equal to angle B plus 30 degrees." Therefore, angle PAO 
has to be greater than or equal to 30 degrees. "That was very 
helpful," says Tiankai. "You want that to be more than 30 de
grees." 

But Tiankai wasn't done yet, because he still had to figure 
out the size of angle COP. To do that, he began to focus on the 
distance from C to P and from P to M . The closer point P is to C , 
the smaller angle C O P becomes. The closer P is to M , the larger 
the angle. How could Tiankai peg the size of these angles? 

At this point Tiankai used one of the most elegant tricks in 
all of mathematics. First he assumed the opposite of what he 
wanted to show. Then he proved that this assumption led to an 
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impossibility, so that what he wanted to show in the first place 
had to be correct. It's called arguing by contradiction. Say, for ex
ample, that you want to demonstrate to a friend the impossibility 
of walking through a brick wall. You could assume the opposite, 
stride forcefully toward the wall, and bloody your nose against 
it. The proof is complete: you can't walk through a solid brick 
wall. 

The details of Tiankai's proof by contradiction are described 
in the appendix (though ambitious readers might want to try 
working out this part of the proof on their own). Essentially, he 
assumed that P is closer to M than to C — in other words, that 
the distance CP is greater than PM. But given that angle PAO is 
more than 30 degrees, this leads to an impossibility. So Tiankai's 
assumption had to be wrong; P has to be closer to C than to M . 

Now he was almost, but not quite, done. If P is closer to C 
than to M , angle C O P has to be smaller than angle O C R (Look
ing at the triangle for a few moments will show you why this is 
so.) But angle O C P is part of the isosceles triangle O C B . As was 
the case with angle B, angle C O B is equal to two times angle A. 
The same algebraic manipulation used previously demonstrates 
that angle O C P is therefore equal to 90 degrees minus angle A. 
But Tiankai had shown that angle C O P is smaller than angle 
OCP. Therefore angle C O P has to be less than 90 degrees minus 
angle A, because that's the measure of angle OCP. Tiankai was 
done — the problem had asked the Olympians to "prove that 
angle A plus angle C O P is less than 90 degrees." 

Tiankai solved the first Olympiad problem in about forty-
five minutes. He had more than three hours to work on the next 
two problems. But the first problem was traditionally the easiest, 
he knew. The hard parts were still to come. 

V 
To those who have forgotten most of the mathematics they 
learned in school, the above proof might seem fairly involved. 
But to math students in high school or college or to scientists or 
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engineers, the proof may not seem that difficult. As mathemati
cians often observe, once a proof has been explained it can seem 
trivial. 

But solving an Olympiad problem is never trivial. Zuming 
Feng, Tiankai's math teacher at Exeter, puts it this way: "It's like 
you watch television, you see those football kickers, they make a 
thirty-yard field goal, and you say, 'Yeah, that's easy.' But if we 
go down there and try that, ninety-nine percent of us will not 
make it." 

The constant ticking of the clock is part of the challenge. 
Even if the Olympians solve one problem, they know they have 
two more to go that day. For that reason they often don't solve 
the problems in the order they're given. Some may work on all 
three problems for four hours and only begin to stumble across 
solutions in the final half hour. 

An even greater challenge is deciding how to approach a 
problem. "For most problems there are lots of approaches, but 
you don't know which one is correct," says Feng. "So if your ap
proach is not working, you face a huge dilemma. Do you want to 
try to fix your approach, or do you want to start again? This is a 
very hard choice to make, because you never know how close 
you are to a solution. When do you want to make that change? 
It's very hard to decide." 

This first Olympiad problem can be solved in several ways. 
But none of the proofs turned in at the Olympiad were simpler or 
more elegant than the one Tiankai produced. The wildly prolific 
and eccentric twentieth-century mathematician Paul Erdds often 
talked about an object he called the Book, which, he said, was 
God's collection of the most beautiful proofs of all possible theo
rems. No mathematician can be absolutely sure that a given 
proof is in the Book, since there may always be an easier or 
clearer way to solve a problem. But of all the solutions turned in 
for this first problem at the Olympiad, Tiankai's is closest to the 
Book proof. 
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And it is the very elegance of Tiankai's proof that raises the 
final, and perhaps unanswerable, question. How did he manage 
to develop what might be the Book proof in just forty-five min
utes? How did he know so quickly and so surely which angles to 
draw, which points to add, which lines to compare? He can't ex
plain. When you ask him, he shrugs his shoulders and turns 
away. 



competitiveness 

Under the lights on the Georgetown University football field, the 
kids at the Olympiad training camp were playing Ultimate Fris
bee. The two teams lined up on opposite goal lines, and one of 
the kids sent a seventy-five-yard pull spinning down the pitch. 
Oaz Nir fielded the Frisbee at the twenty-yard line and looked to
ward his receivers, who were feinting and cutting to get free. It 
was a hot, humid evening in Washington, and the air was com
pletely still, even though the football field was perched on a hill 
overlooking the Potomac. The players began to sweat, and the 
lights high above the field reflected off their glistening skin. Most 
of the thirty or so kids at the training camp were in the game, and 
while some were obviously not very athletic they played enthusi
astically. Others — including several members of the Olympiad 
team — were in excellent shape, with lean, muscular physiques; 
they pivoted and leapt with the grace that comes from spending 
many hours at sports. 

Ultimate Frisbee was invented in 1968 by a group of stu
dents attending Columbia High School in Maplewood, New Jer
sey. The school newspaper staff and student council members 
decided to form a school Frisbee team, partly to capitalize on the 
sudden popularity of the toy, partly to poke fun at the school's 
more conventional sports teams. At first the team attracted 
mainly the more academic kids and the druggies, and the games 
they played were fairly free-form. But over time other kids began 
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to play, and the rules slowly took shape. Whoever catches the 
disk has to keep one foot stationary, just as a player who stops 
dribbling in a basketball game does. That player then has ten sec
onds to throw to another player on the team. The opposite team 
can intercept the Frisbee or, if it hits the ground, the other team 
takes possession. Each team scores by advancing the disk past its 
goal line. 

The first interscholastic Ultimate Frisbee game was played 
on November 7,1970, when nearby Millburn High School sent a 
team to play in the Columbia High School parking lot. Other 
schools in the area began asking for copies of the rules, and five 
high school teams formed the New Jersey Frisbee Conference in 
the spring of 1971. Meanwhile, New Jersey high school gradu
ates were taking the game with them to college, and the first in
tercollegiate tournament was held at Yale in 1975. 

In 1980 forty Ultimate organizers met in Atlanta to discuss 
setting up an international organization for their sport. A world 
association was created in 1984, and the first World Flying Disc 
Federation Congress took place in Sweden in 1985. Today more 
than one hundred thousand people play the game in more than 
forty-two countries, and it was a medal sport in the 2001 World 
Games in Japan. 

The rules of Ultimate Frisbee feature a careful mix of com
petition and cooperation. Players on the field decide whether a 
score has occurred and call their own fouls (an early definition of 
a foul was "any action sufficient to arouse the ire of your oppo
nent"). If a call is disputed, the play is rerun. Over the years the 
intent of the rules has coalesced into a body of knowledge known 
as the "spirit of the game." According to the official rules, "Such 
actions as taunting of opposing players, dangerous aggression, 
intentional fouling, or other 'win-at-all-costs' behavior are con
trary to the spirit of the game and must be avoided by all play
ers." Even in the world championships there are no formal of-
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ficials, and the Spirit of the Game award given to a player or a 
team at each tournament is highly coveted. 

Competitiveness, cooperation, aggressiveness, perseverance 
— motivational factors are as important in an International 
Mathematical Olympiad as in any athletic endeavor. And this 
motivation arises from a similarly complex mixture of psycho
logical forces: the desire to do well, not to be embarrassed, to 
beat the other guy, to enjoy the game, to sweat, to garner praise, 
to win. The Olympians do math problems with the fervor and 
single-mindedness of world-class athletes. Why? What combina
tion of aptitudes and experiences accounts for their fierce com
petitiveness? 

V 
Ian Le had been the final person selected to be a member of the 
U.S. Olympiad team. Membership on the team is determined by 
two tests. The first, the U S A M O , held in May, selects the twelve 
high schoolers who can compete for the six slots on the team. 
The second test, the qualifying exam, is taken by the students at 
the summer training camp during the first few days of the pro
gram. 

The morning after the qualifying exam for the Forty-second 
Olympiad, everyone gathered in the main lecture hall to hear 
who would be on the team. A few of the two dozen or so students 
in the hall were shoo-ins — they had been on the team in previ
ous years and had done extremely well on the U S A M O . Many of 
the younger kids, on the other hand, knew they had no chance; 
they were at the training camp mainly to improve their odds for 
future years. Still, that left a sizable group in the middle who 
could hope to make the team — if their scores on the qualifying 
exam were high enough. 

At 9:00 A . M . Titu strode into the lecture hall. He pulled a list 
from his valise and began to read. Reid Barton, Oaz Nir, and Ga
briel Carroll would be on the team — no surprises there, since all 
three had gone to the Olympiad in Korea the previous year. The 
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next two names Titu called out were Tiankai Liu and David Shin; 
the only real surprise was that Tiankai would be on the team as a 
ninth-grader. For the sixth spot, there was a three-way tie, Titu 
announced. A special run-off exam would be held that afternoon 
to pick the final team member. 

At that point it should have been obvious to everyone that 
Ian Le was going to be very hard to beat. The qualifying exams 
had become a test of endurance as well as mathematical prowess, 
and no one at the training camp was tougher or more determined 
than Ian. Since elementary school he had been a swimmer, adher
ing to the rigorous, self-imposed regime of those who steep them
selves in chlorine — two hours a day in the pool before school, 
sometimes another practice in the afternoon. He had the thick, 
triangular torso of a backstroker rather than the lean taper of 
a freestyler or breaststroker, and he carried himself with a lan
guid grace. He was also an accomplished pianist who had given 
several solo recitals. " I never practiced the piano as much as I 
should," he said. "My teacher always wanted me to practice an 
hour and a half each day. If I was lucky, during the week, I'd 
practice maybe forty-five minutes a day, and then maybe an hour 
and a half on Saturday and on Sunday." 

Ian was born in Australia in 1983 to parents who had emi
grated from Vietnam during the war. His father, Tri Le, was born 
in what is now North Vietnam, but the family moved to Saigon 
in 1954 after the Communist takeover of the north. There Ian's 
father grew up desperately poor but an excellent student. 

" I came to Australia in 1971 under a program called the Co
lombo Plan," Tri Le says. "It offered scholarships to very good 
high school students, mainly from Southeast Asia, but some from 
as far away as Africa. At that time, if you were doing well in 
school, you could postpone your military service. But as soon as 
you finished college, you would be drafted into the army. I was 
just about to finish college when the war ended. That was my se
nior year when Vietnam fell." 



84 a t t r i b u t e s 

In Australia Le met a younger Vietnamese woman in the 
same program, who would later become his wife. When the war 
ended and the Communists took over, Tri Le and his future wife 
were still in Australia, but their parents and siblings were in Viet
nam. Le's brother-in-law was a helicopter pilot and a captain in 
the South Vietnamese Air Force. "He was based in Bien Hoa , " 
says Le, "which is about twenty miles from Saigon. The day Sai
gon fell he began flying family members out to the Seventh Fleet. 
He also picked up other people, not just our families, but other 
people who wanted to leave. What happened is that normally 
you flew out to the fleet and they kept the people there and aban
doned the helicopter. But we have a big family on my side and on 
his side, and he made quite a few trips back and forth. He got 
some of his family out and most of my family out. 

"Then, on his last trip to pick up his parents and my parents 
and my two younger brothers, a lot of people knew about the sit
uation and tried to get on the helicopter. You've probably seen 
the pictures of the helicopter that was taking off from the Ameri
can embassy with people hanging on — it was like that. He took 
off, and a lot of people were hanging onto the helicopter, and it 
was just too heavy. Somehow the helicopter lost its balance, so 
the propellers hit an electrical pole, and it went down. He was 
stuck behind." 

In 1981 the Les visited Vietnam from Australia to see their 
families. "Things were very bad, everyone was struggling," Le 
says. "Six months before we arrived, my brother-in-law had been 
released from the reeducation camp, or I guess you would say the 
concentration camp. He tried to escape from the country again 
and was caught and put in jail. So when we went to Vietnam he 
was in jail and we never did see him. 

"Eventually they allowed him to go to the United States to 
be united with his family, in 1990. So he was stuck behind for fif
teen years." 

Tri Le, his wife, and their two young children immigrated to 
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the United States in 1991. Tri Le found a job as an engineer in 
Philadelphia. His wife went to work as an investment analyst in 
New York City. To split the difference between their commutes 
and to live in a good public school district, the Les moved to 
Princeton Junction, New Jersey, where Ian, their oldest son, en
tered second grade. In kindergarten back in Australia, Ian had 
been good enough in mathematics that his teacher had given him 
different problems from those his classmates received. But in ele
mentary school in Princeton he did pretty much the same math as 
everyone else in his class. In fourth grade he entered a gifted and 
talented program with a few other students, but he wasn't doing 
anything that thousands of other bright children throughout the 
United States don't do. 

The turning point came in eighth grade, when a teacher 
in his middle school introduced him to Mathcounts. He did well 
at the chapter level and then was one of the top four finishers 
in New Jersey, so he made the state team. At the nationals he 
finished twenty-sixth out of the 228 competitors. " I had really 
wanted to place in the top ten," Ian says. " I was kind of upset." 

Ian was hooked. He bought several books of Olympiad-
level problems and began working his way through them. Some
times he would struggle over a single problem for hours, but he 
told himself that it was good training. He took a math class at 
Princeton, and he read his father's old college textbooks. His 
problem solving was improving dramatically, yet still he won
dered if he could aspire to the top levels of high school mathe
matics. " I didn't think I could make it to the summer program," 
he says. " I mean, I was twenty-sixth in the nation in the eighth 
grade, and you have to be in the top twenty-four among all high 
school students to come to the training camp. So it was sort of 
like a dream for me." 

In high school he took the American High School Mathe
matics Examination, which has since been replaced by the A M C 
10 and 12 tests. He did well as a freshman, but the breakthrough 



86 a t t r i b u t e s 

came during his sophomore year, when he qualified for the sum
mer training camp. The next near he finished in the top twelve in 
the nation on the U S A M O and was honored at the State Depart
ment dinner, though he did not make the U.S. team. Not until his 
last year of eligibility, after five years of hard training and a final 
grueling runoff exam, did he make it to the top. 

Given his accomplishments, you might think that Ian would 
be a tightly wound ball of competitiveness. Yet in person he 
doesn't seem competitive at all. He is soft-spoken, generous, 
close to his parents, a reflective thinker about mathematics and 
the issues related to math. During the trip on the Cherry Blossom 
to see the fireworks, he was the first to withdraw from the in
tensely played games. He lay on the floor, put his head in his 
mother's lap, and fell sound asleep. " I don't think of him as a 
very competitive person," Ian's father says. "He gets interested in 
something, and he always tries to do well in whatever he's inter
ested i n . " 

Ian says he tries not to let his competitiveness get the better 
of him. "After the Mathcounts competition, my teacher said, 
'Don't worry about it, Ian. If there's one thing you need to learn, 
it's to never "what if" yourself.' That's really stuck with me. Af
ter a few weeks my disappointment with Mathcounts was behind 
me. My teacher knew me. She knew that I can often be too hard 
on myself." 

V 
Psychologists have developed many elaborate explanations for 
human motivation. We are motivated by the desire to demon
strate our autonomy, bolster our self-confidence, or connect with 
other people. We expend extra effort because we do something 
well or not well enough. We are intrinsically motivated by inter
est in an activity or extrinsically motivated by a reward, like 
praise or a trophy. We are born with genetically determined lev
els of motivation, or we become motivated through formative 
experiences. 
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None of these theories seemed to explain the Olympians' be
havior particularly well — or, rather, they all did. The members 
of the team were so driven to do mathematics that almost any 
motivating force could be elicited through persistent question
ing. In that regard, their competitiveness was unremarkable — 
as much a part of them as the clothes they wore. One of the fa
vorite activities of the Olympians at the training camp — and 
later at the Olympiad itself — was to gather around a computer 
and play an Internet game called Word Racer. An array of ran
dom letters is displayed on the screen, and the challenge is to con
nect adjacent letters to form words faster than your on-line com
petitors. Usually four to eight players scattered around the world 
are playing each game, and because the game is highly addictive, 
some of the players are extremely good. The instant the letters 
appear, the list of found words begins scrolling frantically down 
the screen. The Olympians put one person at the keyboard while 
the others gathered around and called out words. They usually 
won, but not always — and they hated to lose. 

Despite its abstraction, mathematics can be a surprisingly 
competitive endeavor. Even the casual afterschool math clubs in 
many middle and high schools can turn into intellectual battle
grounds, depending on how the club is run. Kids who don't think 
of themselves as good at anything other than math suddenly have 
a chance to prove their mettle with pencil and paper. Students 
earn spots on their school team by beating other students, and 
then those teams compete against other teams. Competitions 
such as Mathcounts and the A M C tests further the sorting pro
cess, with only the best problem solvers moving on to the next 
level. Even the six kids chosen for the U.S. Olympiad team are 
scored individually at the end of the competition. All those who 
don't make the team, a group that includes some of the best high 
school mathematicians in the country, may end up feeling like 
losers. 

The hard-driving nature of math competitions can be espe-
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dally distasteful to girls. Even if they like math, they may become 
disenchanted by math clubs that emphasize speed, rankings, and 
victory above all. Some observers have suggested that the dearth 
of girls at the highest levels of mathematical achievement has 
nothing to do with their math skills but results simply from their 
disinclination to butt heads with the boys. 

The great guru of anticompetitiveness in the United States is 
Alfie Kohn, an author and lecturer who lives in Cambridge, Mas
sachusetts. For more than two decades Kohn has been on a cru
sade to eliminate competition from American life. He begins his 
book No Contest: The Case Against Competition this way: "Life 
for us has become an endless succession of contests. From the 
moment the alarm clock rings until sleep overtakes us again, 
from the time we are toddlers until the day we die, we are busy 
struggling to outdo others." For Kohn competition is a "dis
ease," an "obsession," "warlike," and "destructive." From a 
very early age, children are taught by parents and other adults to 
struggle and overcome. Kohn writes, 

Competitiveness is particularly pervasive in our schools, 
where it is used to prime young students for the rigors of cap
italistic struggle. . . . Few values are more persistently pro
moted in American classrooms than the desirability of trying 
to beat other people. Sometimes this lesson is presented with 
all the subtlety of a fist in the face, as with the use of spelling 
bees, grades on a curve (a version of artificial scarcity in 
which my chance of receiving an A is reduced by your getting 
one), awards assemblies, and other practices that redefine 
the majority of children as losers. 

Kohn bases his critique of competition on four contentions. 
The first is that competition is far from an inherent and necessary 
part of human existence. On the contrary, Kohn says, we learn to 
be competitive because society teaches us to be so. Some human 
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groups, such as some of the nonindustrialized cultures studied by 
anthropologists, seem to be quite free of competition. But in 
western societies, and especially in the United States, competi
tion has become a religion. Popular culture worships the winner, 
from the countless movies celebrating the unlikely victory of an 
underdog to the steady stream of books about getting to the top. 
Jobs, recreational activities, college admissions, and even paren
tal affection are all structured as contests ("let's see who can get 
his room cleaned up fastest"). In this way the urge to compete be
comes so deeply ingrained in our psyches that it seems to have 
been placed there before we were born. 

Kohn's second claim is that competition does not necessarily 
lead to improved performance. In fact, competing often makes 
people perform less well than they would have otherwise. In one 
study, college students who were trying to develop creative solu
tions to problems did better when they were not competing than 
when they were trying to outdo each other. A study of scientists 
found that the most competitive people tended to be the least 
productive (as judged by the admittedly problematic indicator of 
how often their papers were cited by others). Grade school chil
dren competing with each other to produce artwork made sig
nificantly less complex and creative collages than did children 
who were not competing. Many other studies have shown that 
the anxiety and sense of dread that many people feel during con
tests tends to interfere with their concentration and creativity. 

These negative emotions buttress Kohn's third argument, 
which is that most of the time competing isn't even fun. Turning 
a diversion into a competitive sport converts something that can 
be enjoyed for its own sake into a grim, unrelenting struggle, he 
says. Little League games, according to Kohn, are "institutional
ized child abuse." Competition can contribute to ulcers, suicide, 
and drug abuse. Even for the winners in a competition, the thrill 
associated with victory may be suspect. "The pure pleasure of 
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competitive triumph is first cousin to the pleasure of punching 
someone," he writes. 

Finally, Kohn disputes the idea that competition builds char
acter. A single-minded focus on winning undermines our sense of 
fairness and generates a hard-to-resist temptation to cheat. More 
broadly, we compete because we are trying to prove to ourselves 
that we are worthy, but we can never overcome doubts about our 
own capabilities, Kohn says, because there will always be some
one who is better. And when we do lose, as inevitably we must, 
our sense of self can come unraveled: "Competitive loss is a par
ticularly noxious kind of failure, one that contains messages of 
relative inferiority and that typically exposes one to public judg
ment and shame." 

Kohn's arguments are obviously exaggerated, but any fair-
minded observer must concede that he has a point. Competi
tion often assumes ridiculous proportions in our society. Parents 
dress five-year-old girls in provocative dresses and eyeshadow 
so they can compete in beauty contests. Parents, teachers, and 
coaches pit school-age children against each other in head-to-
head combat, believing that somehow the experience will make 
everyone want to excel. In the battle to get into good colleges, 
high school friends can become rivals who hope that everyone 
else bombs on their SATs. And competition has an unfortunate 
tendency to crowd out cooperation. In the past few years the or
ganizers of the Ultimate Frisbee world championships have even 
had to station "observers" around the field to settle disputes that 
the players aren't able to resolve themselves. 

Kohn's preferred solution is to eliminate competition from 
our lives. He won't brook the suggestion that competition and 
cooperation could be more appropriately balanced. In his view, 
achieving a goal at someone else's expense is ultimately destruc
tive: "The phrase healthy competition is actually a contradiction 
in terms," he writes. " I believe the case against competition is 
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so compelling that parenthetical qualifications to the effect that 
competing can sometimes be constructive would be incongruous 
and unwarranted." 

One response to Kohn's arguments is to dismiss them simply 
as Utopian and unworkable. If anything, modern life is becom
ing more competitive, not less. In capitalist and democratic socie
ties, people rely on competition to help them make decisions 
about products, ideas, and candidates, and as capitalism spreads 
around the world, so does the intensified competition associated 
with open markets. Perhaps hunter-gatherer societies were non
competitive (though many anthropologists dispute this point), 
but most people are glad that they no longer have to hunt and 
gather to survive. If the benefits of modernity require some level 
of competition, most people are happy to make the trade-off. 
And in a world of continued scarcity and injustice, how should 
economic goods be distributed if not through some form of fair 
competition? 

But in the end an argument based on the inevitability of 
competition is unsatisfying. The case for competition can stand 
only if it can be shown not to be an unmitigated evil. 

The first observation that must be made is that many people 
like to compete. They say that it inspires them to work harder, 
reach for higher goals, or satisfy a deep longing for recognition. 
Some choose the direct confrontations of chess or tennis; others 
prefer the gentler striving of Ultimate Frisbee. Eliminating com
petition from the lives of such people would not make them hap
pier. Maybe people who like to compete are simply brainwashed 
victims of our hypercompetitive society. But they don't see them
selves as victims and would likely take offense at being labeled 
insecure neurotics. 

Occasionally the well-meaning organizers of math competi
tions take steps to reduce the competitiveness engendered by in
dividual rankings — say, by having competitors solve problems 
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as a team. But if they go too far in that direction, they quickly 
meet resistance. Kids like to know where they stand, and they in
stantly know if they are being patronized. Mathematical reason
ing ultimately takes place in the heads of individuals, not in some 
amorphous group-mind. Competition acknowledges the unique
ness of each person's efforts, and many people are reluctant to 
give that up. 

Furthermore, most people would disagree with the conten
tion that anything less than absolute victory means failure — 
otherwise, why would sixteen thousand people run in the Boston 
Marathon each year? Math competitions offer many rewards in 
addition to being number one. People learn to fit themselves into 
competitive hierarchies and not to be unduly tormented by their 
ranking. Indeed, one argument for competition is that students 
need to learn this skill (though in our society they already get 
plenty of practice at it). 

Competition also has an important social function. Rela
tively few competitions take place unobserved. People watch the 
conflicts going on around them and draw lessons from what they 
see — whether of the nobility or of the futility of ambition. 
Watching others compete teaches us both what is permissible 
and what is possible. Competitions let us speculate about our ca
pabilities and our limitations. 

In that way competition is both a destructive and a creative 
force. It tears down the status quo, however inconsequential and 
temporary that status quo may be, and replaces it with some
thing new. Many highly creative people are consumed by com
petitive fervor. Sometimes that energy tears them apart, but in 
other cases it produces works of great art, literature, science, or 
mathematics. 

Competitions can be structured in ways that pose less risk to 
the self-esteem of competitors. Math contests don't always have 
to compare one student to another. Including a team compo-
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nent can reduce the anxiety of head-to-head comparisons, just as 
Word Racer is a different game when played against a roomful of 
kids in Bombay than when you're competing against your best 
friend at the next computer terminal. Or everyone can strive to 
reach a high but attainable standard — as when a single problem 
is posed and students have as long as they need to solve it. By fo
cusing on the task rather than on victory, competitions can help 
students feel good about what they can do rather than about 
whom they can beat. 

These observations apply even at the very highest levels of 
competition. When Melanie Wood began attending the Olym
piad summer training camps, she was shocked by the competi
tiveness she found. "I've always had a sort of anticompetitive po
sition," she says. "At the training camp there are these team 
contests where students work in teams against other teams. I 
thought that was too competitive — and in fact for a couple of 
years those competitions kind of dissolved, which was blamed on 
me. I didn't really have anything to do with it, but it's true that 
the anticompetitiveness that I tried to instill in other people was 
partly responsible for their dissolving. 

"I've always been opposed to summing up scores and saying 
that this is who wins and this is who loses. I like to work with 
people; I don't like to wonder if I can beat them. I mean, I don't 
mind saying, 'Oh, we're going to beat the Bulgarians or the Rus
sians,' because I don't know them. But I have a lot of issues with 
not working together with someone else on your team. 

"Some people say that I'm very competitive — and that's 
true — but there's an important distinction. I like to do very 
well, but I like other people to do well, too. It's never been for me 
about beating other people." 

The second problem on the Forty-second Olympiad was an in
equality, a mathematical expression in which one quantity is 
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greater than or less than another quantity. It referred to three 
positive numbers labeled a, b, and c. For any value of those three 
numbers, from zero to infinity, the contestants had to prove that 

a/^a2 + Sbc +b/jb2 + 8ac +c/-Jc2 + 8ab > 1. 

(The symbol > means "greater than or equal to.") 
This problem is not as hard to understand as it looks. Say 

that a equals 1, b equals 2, and c equals 3. In that case, the first 
term in the problem is equal to 

l/Vl 2 + 8 x 2 x 3 , or l/Vl + 48, which equals l /V49, or 1/7. 

The second term is equal to 

2 / V 2 2 + 8 x 1 x 3 , or 2/V28, 

and the third term is 

3/725, or 3/5. 

The sum of those three fractions is about 1.12, so the inequality 
holds for those three numbers. But the Olympians needed to 
prove that it holds for an infinity of different numbers, not just a 
particular three. 

Ian began his assault by inserting some random numbers 
into the problem. He thought he might be able to learn some
thing about the inequality by seeing how close he could get the 
two sides to being equal. But that approach offered no immedi
ate clues about how to begin constructing a proof. He then tried 
rewriting the inequality to eliminate the square-root signs but 
immediately ran into difficulties. The problem can be solved that 
way, but it's not easy. One of the Chinese team members used a 
similar approach to raise one number to the 480th power and 
then take the 486th root of the result. The method works in the 
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end, but it's an ugly solution with many potential pitfalls, and Ian 
deemed the approach too risky. 

He began to worry. Though he had solved the first problem 
pretty quickly, the third problem looked so simple that he knew 
it would in fact be very hard. To leave enough time to finish the 
exam, he needed to make some progress. " I thought it shouldn't 
be that tough," he later said. "There are only a limited number of 
things you can try. The standard way would be to multiply the 
terms and square them to get rid of the square-root signs. But I 
could see that if you did that you'd end up with a mess. So I knew 
I had to come up with something clever." 

About this time some of the Olympians started to take bath
room breaks. Going to the restroom was complicated, since the 
competitors were not allowed to consult any cheat sheets they 
might have sneaked into the exam. They had to raise a hand to 
attract the attention of one of the "invigilators" who prowled 
among the tables like sharks among a school of fish. Then a mon
itor accompanied each one to the bathroom and back. 

Ian was returning from the bathroom when he thought of it. 
"Jensen's," he said to himself. And he knew right away that the 
problem was solved. 

Johan Jensen was the head of the technical department of 
the Copenhagen Telephone Company from 1890 until the year 
before his death in 1925. The son of an educated but feckless fa
ther, he was essentially self-taught in mathematics and never held 
an academic position. But at the College of Technology in Co
penhagen, where he studied science, he fell in love with mathe
matics and decided to devote his nonprofessional life to it. 

In 1906 Jensen published an article that guaranteed his 
mathematical immortality. He showed that for a given class of 
mathematical relationships, a particular inequality (described in 
the appendix) holds. What Ian saw in his moment of illumina
tion was an extremely clever way of adapting Jensen's inequality 
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to problem two. He took the pieces of the problem and plugged 
them into Jensen's inequality. After performing a series of alge
braic manipulations, he derived something close to the following 
expression: 

a b c J(a+b + c)3 

— + — + — > IJ : 
4 a1 +8bc 4b1 + 8ac 4c1 + Sab Ja3 +b3 +c3 +24abc 

(Actually, Ian used something called cyclic notation, which com
presses this expression a bit, but the result was essentially the 
same.) 

At this point the problem was almost solved, because the 
term on the left-hand side of this inequality was the same as the 
term in the original problem. If Ian could prove that the right-
hand side was greater than 1, he was done. That meant proving 
that the numerator of the fraction, (a + b + c)3, was larger than 
the denominator, a3 + b3 + c3 + 24abc. That was not so hard 
to demonstrate. Ian proved it using something called the arith
metic mean-geometric mean inequality. He did a few straightfor
ward calculations and the proof was complete. "As desired," he 
wrote at the end of his solution. 

As with Tiankai's solution to problem one, the proof seems 
straightforward. But the judges admired Ian's solution even more 
than they had Tiankai's. Before an Olympiad the judges typically 
prepare a list of different solutions for each problem to help them 
decide whether a student deserves full credit for a problem, par
tial credit, or none at all. When the judges received Ian's solution 
at the end of the first day, they saw that he had developed a com
pletely new way of solving problem two. None of them had real
ized that it was possible to use Jensen's inequality as Ian had. 
And his approach was simpler and more elegant than anything 
they had concocted: his solution may very well be what Erdds 
would have called the Book proof for problem two. 
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When someone performs well under difficult circumstances, 
we can admire that person for his skill and pluck. When someone 
performs well under intense competitive pressures, when the eyes 
of the world are focused on that person's every action, our admi
ration turns into something closer to awe. And perhaps that's the 
greatest argument in favor of competition. It can produce mo
ments not only of great achievement but also of great beauty. 



5 . t a l e n t 

Of the three problems posed each day of the Olympiad, the first 
is traditionally the easiest, the second the next hardest, and the 
third the most difficult. So what were the Olympians to make of 
problem three? 

Twenty-one girls and twenty-one boys took part in a mathe

matical competition. It turned out that (a) each contestant 

solved at most six problems, and (b) for each pair of a girl and 

a boy, there was at least one problem that was solved by both 

the girl and the boy. Prove that there was a problem that was 

solved by at least three girls and at least three boys. 

In its self-reflective simplicity, this was the perfect Olympiad 
problem. Yet its inclusion on the exam had been a matter of great 
dispute. The six problems are chosen through a complicated and 
highly political process. The coach of each team comes to the 
Olympiad site a few days before the event with a list of possible 
problems. As soon as they have checked into their hotel rooms, 
the coaches begin a series of closed-door meetings to decide on 
the problems that will appear on the test. (After the choices are 
made, the coaches are quarantined from the competitors until af
ter the exam and the assistant coaches lead the teams.) During 
these conclaves many of the coaches from weaker teams lobby 
forcefully for easier problems. If their team scores poorly, it re
flects badly on them and on their country. Though every problem 

98 
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on the exam has to be of Olympiad caliber, the odds of embar
rassments are lower if the problems are easier rather than harder. 

What would become problem three on the Forty-second 
Olympiad was one of the most simply stated problems in the 
event's history. But the assembled coaches quickly realized that it 
would be extremely difficult to solve. Furthermore, it had all the 
trappings of an all-or-nothing problem. Unless the Olympians 
solved the problem completely, they probably weren't going to 
make enough progress to earn partial credit for their solutions, 
so most of the scores were going to be 7s or Os. 

Titu was one of the coaches who argued passionately for in
cluding the problem. It was simply too beautiful to forgo. "It's a 
problem that could be understood by any student," he said. "But 
to solve it, that's a different story." 

Everyone on an Olympiad team is mathematically "talented." 
But what is the nature of that talent, and how do Olympians ac
quire it? Were they born with it, or did they develop it through 
assiduous practice? Did their talent inevitably reveal itself at an 
early age, or did it become apparent only later? Were teachers 
and coaches essential to foster that talent, or would their skills 
have appeared anyway? The word "talent" is plagued by almost 
as many ambiguities as the word "genius." 

One view of talent is that it is a God-given gift poured into a 
person before birth. According to this view, such a gift often re
veals itself at an early age because it arises from a person's genes, 
not experiences. In her book Gifted Children: Myths and Real
ities, Ellen Winner, a psychologist at Boston University, describes 
several striking cases of young children who developed intel
lectually at a prodigious pace. One infant boy, whom she calls 
David, could understand questions like "Where's Daddy?" and 
" C a n you go and get it?" when he was eight months old — about 
a year ahead of the normal developmental timetable. At fifteen 
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months, when most children are just learning to speak, David 
had a vocabulary of about two hundred words. He taught him
self to read when he was three by having his mother sound out 
words for him as she and he pointed to the words in books, and a 
few weeks later he was reading on his own for hours on end. By 
the age of four he was reading biographies and science books and 
poring over atlases, and he began to write stories and letters to 
friends and family members. He knew how to add and subtract 
by that age and became fascinated with the idea of infinity. The 
next year he gained a deep understanding of fractions and ratios 
— concepts normally not emphasized until middle school. He 
also began to learn other languages when he was five — he stud
ied French, Spanish, and sign language in books from the library. 
By the time David entered first grade he was reading at the sixth-
grade level and was far ahead of his classmates in most other sub
jects. 

Winner refers to David as a "globally gifted child." He ad
vanced very quickly in many different areas — math, reading, 
the sciences, languages. Other fast learners excel in more re
stricted domains. Some become fascinated by numbers and pat
terns. They mathematicize their world, as Tiankai did when he 
began to interpret objects around him as geometric shapes. They 
factor the numbers they see on license plates or memorize pi to 
hundreds of places. Other children have an incessant need to 
draw. They may spend hour after hour sketching trains, balleri
nas, or animals. Some musical prodigies, though certainly not all, 
fall so deeply in love with their instruments that they work their 
fingers raw; Leonard Bernstein's parents had to plead with him 
to stop practicing the piano. 

Each such child has a different developmental trajectory, 
says Winner, but they share several common features. All have 
what she calls an overwhelming "rage to master." When they be
come interested in something, they devote themselves to it with 
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every ounce of their being. Many become obsessed with a partic
ular subject — volcanoes, insects, prime numbers, Greek myths 
— and develop an insatiable need to learn everything they possi
bly can about that subject. Some seem to need relatively little 
sleep, and they can exhaust their parents with their demands. 
They have an enviable ability to achieve the mental state that 
psychologist Mihaly Csikszentmihalyi at Claremont Graduate 
University calls "flow"; when they are working in their area of 
interest they seem to lose touch with the outside world and be
come one, mentally and physically, with what they are doing. 

Even with less precocious children, the view that talent is in
nate is widely held. Parents see their children as good at some 
things and bad at others, especially when comparing siblings. 
They can't think of any obvious force driving a child toward a 
particular set of competencies. They therefore assume that tal
ents are a reflection of who that child is, as predetermined as the 
color of his or her hair. 

V 
Some psychologists have always been uncomfortable with this 
view. Ascribing high achievement to some mysterious biological 
essence makes about as much sense as the Romans' belief in ge
nius, they say. People are a product of their experiences, and the 
only way to explain talent is to examine those experiences. 

One such skeptic was Michael Howe, who was a professor 
of psychology at the University of Exeter in England until his 
death a few months after the Forty-second Olympiad. In a long 
series of articles and books, Howe argued vigorously against 
what he called the "talent account": the idea that just a few peo
ple are born with a special mental capacity that enables them to 
achieve high levels of performance in a particular field. One fea
ture of the talent account, according to Howe, is the belief that 
coaches, teachers, and other adults can detect these special quali
ties when a child is young, even before he or she has demon-
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strated exceptional levels of performance. These talented young 
people can then be given special attention to develop their geneti
cally based gifts. Those who aren't born with talent can develop 
their skills, but they can't expect to keep up with their more tal
ented peers. 

The evidence simply does not support the talent account, 
Howe insisted. Individuals are good at certain tasks because of 
previous experiences, not because they have a special talent or 
gift. An unusual achievement is like the tip of an iceberg — peo
ple see the part that is plainly visible but overlook the huge base 
of practice and thought that support it. Howe and several of his 
colleagues were especially interested in music, and they pointed 
out that all students require about the same amount of practice 
time to reach particular musical milestones (as measured, for ex
ample, by a series of exams). One study of German student vio
linists showed that individuals training to be concert soloists had 
practiced for about ten thousand hours by the age of twenty-one 
(which works out to about twenty hours a week for ten years). 
The violinists who intended to be teachers rather than perform
ers had practiced for about half that time, but no one had be
come an accomplished violinist without engaging in many hours 
of rigorous training. 

Studies of other fields have produced similar results. It takes 
about ten years of dedicated practice to become a high-level 
chess player, ballerina, physicist, or mathematician; even the 
youngest member of the U.S. Olympiad team, Tiankai Liu, had 
been thinking deeply about mathematics for more than ten years. 
In a study of seventy-six major composers, all but three had 
spent at least ten years composing before they began to produce 
major works, and the three exceptions (Dimitri Shostakovich, 
Niccolo Paganini, and Erik Satie) took nine years. "Although it is 
widely believed that certain gifted individuals can excel without 
doing the lengthy practice that ordinary people have to engage 
in, the evidence contradicts that view," Howe concluded. 
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Picking out young people who will go on to excel is also 
much tougher than parents, teachers, and coaches think, Howe 
pointed out. In the 1980s, for example, Lauren Sosniak inter
viewed twenty-one outstanding American pianists in their mid-
thirties and their parents. She found that few of the future musi
cians had displayed signs of exceptional promise when they were 
young. Even after they had been playing the piano for six years, 
confident predictions about their eventual eminence would have 
been possible in only a few cases. 

When adults say they see talent in a child, they may actually 
be seeing a child who has matured earlier than others, either 
physically or mentally, Howe and other psychologists have said. 
Or the child may simply find a task more interesting or may have 
had some previous exposure to it. Whatever the reason, as soon 
as the child is labeled as talented, the prediction becomes self-ful
filling. That child is given extra attention, so he or she draws far
ther ahead of the pack. 

In fact, most people can achieve at very high levels in a par
ticular domain if they are willing to invest the necessary time and 
energy, say psychologists who share Howe's perspective. For ex
ample, Anders Ericsson at Florida State University cites studies 
in which randomly selected people learned to do a particular 
task so well that observers assumed they had a special talent for 
it. With the proper training, people could memorize numbers 
and words, perform calculations, or tap out patterns with aston
ishing skill. They didn't need an inborn talent; they simply had 
to engage in deliberate, purposeful, and carefully monitored 
practice. 

What about children who demonstrate unusual abilities at 
a very early age, such as talking before the age of one or learning 
to read before the age of four? Howe expressed doubts about 
many of these reports. Such recollections almost always come 
from parents or from grown-up prodigies, which inevitably 
raises questions of veracity. Howe also was skeptical that these 
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prodigious abilities really developed without prodding. Prodigies 
almost always emerge from families that are particularly recep
tive to the idea of raising a prodigy. The parents provide bounti
ful stimulation to their children — books, music, lessons, con
versation, playthings. They focus great energy on their children 
and expect them to do well. Sometimes the parents change jobs, 
move to different cities, or give over a substantial portion of their 
own lives to developing their children's gifts. At a symposium in 
1993 Howe said, "There are parents who take the credit for their 
child's achievement, but there are others who say that the child 
received a gift from God and that they had nothing to do with it 
at all. As proof of this, they will say that on one day their child 
had 623 words in his vocabulary and five days later he had 678, 
but that they knew nothing about why the child did so well." 

The bottom line, Howe and other psychologists have con
cluded, is that people do not have inborn gifts or talents that pre
destine them to greatness. Those who are highly accomplished 
shape their lives with the same basic materials that the rest of us 
have. "The notion of innate talents may turn out to be entirely 
superfluous," Howe wrote. "Even though the idea that innate 
talents provide a mechanism via which genetic differences be
tween people have impacts on their capabilities is widely ac
cepted and commonly believed in, there are good reasons for 
thinking that such talents are mythical rather than real." 

In his book Genius Explained, Howe subjected his ideas to 
the acid test: accounting for the achievements of the young Wolf
gang Amadeus Mozart. Born in Salzburg in 1756, the youngest 
son of an ambitious and oppressive father and a doting and op
pressed mother, Mozart embodies more than any other com
poser the popular understanding of genius. Under the watchful 
eye of his father, Leopold, who was an accomplished violinist, 
composer, and assistant conductor in the employ of the prince-
archbishop of Salzburg, Mozart learned to play the harpsichord 
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when he was three after watching his older sister, Marianne, 
practice. Leopold gave his young son a notebook of easy tunes 
that he had compiled for Marianne, and Mozart quickly mas
tered the pieces. "Wolfgangerl learned this minuet and trio one 
day before his fifth birthday in half an hour at half past nine in 
the evening of January 26, 1761," his father jotted down in the 
notebook. Not long thereafter, Mozart produced what may have 
been his first compositions: two short pieces for clavier that his 
father also copied into the notebook. 

Between the ages of seven and almost eleven, Mozart and 
Marianne traveled with their father through Europe, demon
strating their virtuosity on the harpsichord and violin. Mozart 
would astound and delight his audiences by sightreading compo
sitions he had never seen before, or adding a bass part and inter
mediate voices to a melody he was given, or playing the harpsi
chord with a cloth covering the keys. He could improvise on a 
theme for hours, and he became a fluent composer, dedicating his 
youthful sonatas, symphonies, and concertos to the queens, 
lords, and princesses who marveled at his exploits. "Nowadays, 
people ridicule everything that is called a miracle," Leopold Mo
zart wrote in a letter to a friend. "Hence one has to persuade 
them; and it was a great pleasure and a great victory for me to 
hear a Voltairian say to me, 'Now for once in my life I have seen a 
miracle; this is the first.'" 

Mozart also had an incredible memory for music. At four
teen he wrote out the complete score of a long multipart musical 
composition, Gregorio Allegri's Miserere, after hearing it played 
on just a few occasions. He could compose and improvise in the 
style of any music he heard, and he could mimic the sounds of the 
birds or people around him. He was absorbing the musical envi
ronment of his age, preparing to become, as an adult, the author 
of some of the most beautiful music ever written. 

Howe did not dispute that Mozart had begun writing music 
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at a very early age. But, he pointed out, those early works were 
not outstanding by the standards of mature composers, though 
they gave some glimmers of what was to come. Also, those early 
works were written down by his father, who might have im
proved them in the process. Many of his childhood composi
tions draw heavily on the work of other composers. Mozart's 
earliest symphonies, for example, are strikingly similar to those 
of Johann Christian Bach, who encouraged the eight-year-old 
Mozart when they met in London in 1764. None of Mozart's 
major works appeared until he had been composing for more 
than a decade. For example, his earliest concerto that is consid
ered a masterpiece, the Piano Concerto No. 9 in E-flat major 
(K. 271), was composed when he was twenty-one. 

Similarly, Mozart's performing abilities were surely extraor
dinary, but they weren't inexplicable, Howe said. No one knows 
how much the young Mozart practiced, but his father imposed a 
strict regimen on both Wolfgang and Marianne, since the two of 
them had become the main source of income for the household. 
Mozart had essentially no friends as a child and devoted most of 
his time to music. Howe assumed, probably conservatively, that 
he practiced about three hours a day from the age of three. In 
that case, by the time he was six, when he went on his first musi
cal tour of Europe, he would have had 3,500 hours of practice. 
That's about how long it takes for a young performer to become 
a very good amateur. 

That amount of practice time would have been very unusual 
for a child of the eighteenth century. But since then it has become 
more common. Today, Howe claimed, many children reach the 
same levels of performance as did the young Mozart. His earliest 
feats were certainly impressive, but they would not attract nearly 
as much attention if they were repeated today. 

Finally, although Mozart's ability to absorb and retain mu
sic was certainly extraordinary, Howe pointed to a consider-
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able body of research showing that people can remember huge 
quantities of information if they are knowledgeable in that area. 
Chess experts, for example, can recall vast stores of moves and 
strategies from past games that they and others have played. And 
everyone can develop, through training, much better memories 
for particular kinds of information. 

Mozart's feat with Allegri's Miserere was remarkable, Howe 
wrote in his book Genius Explained, 

but imagine the unusual everyday life of the young Wolfgang 
Amadeus Mozart. He inhabited a world of music, hour after 
hour, day after day, in the company of a father who was an 
expert teacher. By adolescence, the sheer amount of Mozart's 
musical knowledge would have been enormous by most peo
ple's standards. He would have recognised many familiar 
structures and patterns, eliminating the need to recall each 
note separately. As a result, compared with a non-musician 
Mozart would have perceived the task very differently, with 
the information that needed to be remembered being mean
ingful and interconnected. And although Allegri's Miserere 
is a lengthy composition, it is one that happens to contain 
a great deal of repetition. For a person as knowledgeable 
as Mozart, that would have lightened the burden of remem
bering. 

People obviously have inborn differences that are the prod
uct of their genes, Howe said. But the genetically based differ
ences that contribute to achievement may not be the ones most 
people usually cite. Rather than having a music gene or a tennis 
gene or a math gene, some people may be born with the ability 
to concentrate more intently and not be distracted. Some chil
dren may be more optimistic and self-confident, allowing them 
more easily to overcome the obstacles facing anyone who tries to 
do something extremely well. They may have higher levels of en-
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ergy and enthusiasm, so that they dedicate themselves to tasks 
with greater purpose. In other words, the differences that influ
ence achievement may be related to how people feel rather than 
how they think. As Howe wrote, " A number of geniuses, includ
ing Darwin and Einstein, have disclaimed having superior inher
ent intelligence, but no genius has ever denied either possessing 
or relying upon a capacity for diligence or a healthy curiosity." 

These essentially emotional factors may be reinforced by 
feedback loops similar to those involved in the selection of tal
ent. Imagine, for example, that one infant's brain experiences 
music as particularly soothing or interesting. Such a child might 
be more attentive to music from a very early age (even in the 
womb), and the parts of the brain specialized for musical abili
ties would therefore become more highly developed. Or a child 
might have an aesthetic preference for shapes and patterns, 
which in turn would serve as the seed of future mathematical 
ability. There may be critical periods during a young child's life, 
perhaps lasting just a few days or weeks, when experiences are 
indelibly engraved on the developing personality. All of these 
possibilities seem just as plausible as the idea that people are 
born naturally good at something. 

Upon these internal processes must be superimposed all the 
unique occurrences of an individual's life. The direction provided 
by parents, teachers, and coaches obviously has a huge influence. 
In one study, students were randomly assigned either to be tu
tored individually or to be taught in a conventional classroom. 
The average tutored student performed better than 98 percent of 
the students taught the conventional way — two standard devia
tions above the classroom norm. Many of the Olympians point 
to a specific person — a teacher, parent, mentor, or coach — 
who provided critical feedback and guidance. In a young person 
with ambition and determination, such an adult can create talent 
where none was evident before. 
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And then there is sheer luck, which influences everyone to a 
greater or lesser degree. The childhood illnesses of Charles Dick
ens isolated him from other young people and put him in the 
company of books. If Charles Darwin had not volunteered to ac
company Captain Robert Fitzroy on the voyage of the Beagle, 
Alfred Russel Wallace would probably have been the discoverer 
of the theory of evolution. Every Olympian recalls critical mo
ments that had immense consequences. A coach needs one more 
member to round out a math team and asks a seventh-grade girl 
who he has heard is good at math. A group of mathematicians 
starts a lecture series that attracts the interest of a particular boy 
and his parents. 

V 
The basic contention made by Michael Howe and like-minded 
psychologists — that the achievements we ascribe to talent arise 
from practice and experience, not from inborn abilities — has al
ways generated great opposition. Life just doesn't seem to work 
that way. Some kids learn how to draw, play basketball, or multi
ply more easily than others. Maybe the difference is subtly moti
vational rather than cognitive, but the end result is the same: 
some children have to work very hard to master a new skill while 
others seem to pick it up effortlessly. As psychologists David 
Feldman and Tamar Katzir of Tufts University once wrote in a 
commentary on one of Howe's articles: "If anyone can prove that 
the works of these individuals can be explained without recourse 
to a construct like natural talent, we will concede that talent does 
not exist: Mozart, Picasso, Shakespeare, Martina Hingis, Ba-
ryshnikov, Pavarotti, Ramanujan, Judit Polgar, Michael Jordan, 
and Robin Williams. Practice, indeed." 

The practical implications of rejecting the talent account 
also bother some critics of Howe's work. Resources to develop 
talent are inevitably limited. Focusing resources on children who 
show interest and ability in a given domain would seem to make 
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more sense than trying to spread those resources among all 
young people. And the idea of inborn talent can serve a valuable 
social end, even if it seems discriminatory. A young person in dis
advantaged circumstances may feel so strongly that talent will 
prevail that he or she will work ceaselessly to beat the odds. 

Other critics take issue with Howe's use of the data. Accord
ing to Ellen Winner, reports of early achievement among infants 
and young children are too numerous to ignore. "These kids 
are incredibly motivated to learn," she says. "The average child 
learns to read between six and seven years of age with consider
able instruction, but some children learn to read at age three or 
four with minimal instruction. They've broken the code, some
thing clicks. You can't bribe an ordinary child to do that." 

Evidence also continues to accumulate that the brains of at 
least some highly able people are different from other brains, 
Winner observes. The observation that a disproportionate num
ber of mathematicians, musicians, and artists are left-handed or 
ambidextrous suggests that their brains are organized differently. 
People who are not strictly right-handed tend to have more activ
ity in the brain's right hemisphere, which is typically specialized 
for spatial rather than verbal representations. Maybe the brains 
of these individuals are predisposed to carrying out particular 
tasks. 

Finally, the critics counter Howe's arguments by pointing to 
what is called savant syndrome. Savants have brain dysfunctions 
that cause severe social or intellectual impairments; they typi
cally have IQs ranging from about 40 to 70. But they are excep
tionally skilled in particular areas. One autistic savant, a man 
named Richard Wawro, who lives in Scotland, produces paint
ings acclaimed as modern masterpieces. Another, Kim Peek, who 
was the model for the character played by Dustin Hoffman in the 
1988 movie Rain Man, has memorized parts of more than 7,600 
books, but he is so developmentally disabled that he must rely on 
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ther for his daily needs. An intellectually disabled savant named 
Alonzo Clemons can produce a perfect sculpture of an animal 
that he sees just for an instant. Such abilities would be remark
able in an otherwise ordinary person. In individuals with the 
deficiencies characteristic of savants, they seem miraculous. 

One of the most famous savants in American history was a 
slave named Thomas, who was born in 1849. When Tom was 
very young, his parents were purchased by General James 
Bethune of Columbus, Georgia, and by tradition Tom was given 
his owner's last name. Blind and intellectually impaired from 
birth, Tom grew up in the Bethune household listening to the 
sounds around him, including the singing and piano practicing 
of the general's daughters. One day when Tom was four years 
old, he sat down at the piano and began to imitate perfectly 
the chords he had heard the girls practicing. General Bethune 
arranged for Tom to receive music lessons, and by the age of six 
he was improvising and writing original musical compositions. 
In 1857 General Bethune rented a large hall in Columbus, and 
Blind Tom, as he came to be called, began performing before 
awestruck audiences of southern aristocrats. 

At the age of nine Tom was hired out to a promoter, who 
sent him to hundreds of cities across the United States, perform
ing four shows a day at each stop. His abilities were legendary. 
Musicians in the audience were invited to perform a piece of mu
sic, after which Tom would play the same piece. He could play a 
song and then turn his back to the piano and play the same piece 
with his hands reversed. Tom could sit next to someone playing a 
treble part and improvise a bass accompaniment as the other per
son played. If someone struck ten different keys on the piano si
multaneously, Tom could instantly list all ten notes. During his 
life he memorized thousands of songs, and some of his composi
tions are still performed today. Newspapers called him the great
est pianist of his time, with skills surpassing even Mozart's. 
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After the Civil War Tom was free, and General Bethune be
came his manager. He provided Tom with food, shelter, musical 
instruction, and an allowance of twenty dollars per month 
(Tom's performances brought in an estimated eighteen thousand 
dollars each year). When Tom turned twenty-one, the general ar
ranged to have him declared insane and became his legal guard
ian. For the rest of his life, until his death at the age of fifty-nine 
in Hoboken, New Jersey, Tom traveled widely, first with General 
Bethune and later with one of the general's daughters-in-law, giv
ing demonstrations of his prodigious abilities. In photographs he 
is a short, heavyset man with close-cropped hair, closed eyes, and 
the expression of someone listening to a phrase of music playing 
inside his head. 

In 1869 Mark Twain saw one of Tom's performances and 
described it this way: 

He swept [the emotions of his audience] like a storm, with 
his battle-pieces; he lulled them to rest again with melodies 
as tender as those we hear in dreams; he gladdened them 
with others that rippled through the charmed air as happily 
and cheerily as the riot the linnets make in California woods; 
and now and then he threw in queer imitations of the tuning 
of discordant harps and fiddles, and the groaning and wheez
ing of bag-pipes, that sent the rapt silence into tempests of 
laughter. And every time the audience applauded when a 
piece was finished, this happy innocent joined in and clapped 
his hands, too. 

Taken together, the arguments against Howe's position seem 
very strong. Yet Howe and his supporters have counterargu
ments to every criticism. If talent is so obvious in the young, why 
do so many precocious children fade from the scene while high 
achievers emerge from nowhere? Many exceptional performers 
show no signs of brain abnormalities, so an unusual brain does 



t a l e n t 113 

not seem necessary for excellence. Even the feats of savants do 
not necessarily imply that talents are innate, Howe said. Such in
dividuals are not born with the skills they master. Like anyone 
else, they must learn how to play the piano, paint, or recite long 
prose passages. As a very young child, Blind Tom was fascinated 
by sounds. For hour after hour, in the shuttered isolation of his 
mind, he listened to the singing of General Bethune's daughters, 
their scales and chords on the piano, his mother's voice. When he 
was finally allowed to sit at the piano and play, he must have felt 
that he was being given an opportunity to speak after years of si
lence. 

So the old argument between nature and nurture remains as in
conclusive as ever. You could look at the members of an Olym
piad team and say, "These kids obviously were born with a gift 
that enables them to solve these problems." Or you could look at 
them and say, "Anyone who spent as much time thinking about 
mathematics as these kids do could get to this level." The ques
tion seems insoluble: are our genes or our experiences primarily 
responsible for our accomplishments? 

According to David Moore, a psychologist at Pitzer College 
and Claremont Graduate University in California, this question 
has never been answered, despite decades of effort devoted to it, 
for a good reason: the question makes no sense. We cannot ascer
tain the extent to which genes contribute to a complex human 
trait like intelligence or creativity. The question is not a scientific 
one; it is pseudoscience. 

Moore acknowledges, of course, that no one sees complex 
traits as originating entirely in genes or entirely in experiences. 
Even the most ardent behavioral geneticists concede that experi
ences deeply shape our lives. But Moore takes the argument 
much further. He says that the nature of the interactions between 
our genes and our experiences sharply limits the kinds of ques-
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tions we can ask and the kinds of answers we can expect. Distin
guishing between biological and cultural influences on human 
traits is the wrong way to think about the world, he says. "Psy
chology is still a very young field, so we are dealing with these 
very large constructs that need to be broken down before we can 
understand them." 

In his book The Dependent Gene: The Fallacy of "Nature 
vs. Nurture," Moore points out that people tend to array human 
traits along a sort of spectrum. At one end we place traits like 
hair color or upright stance that seem to be 100 percent genetic. 
At the other end we place traits that seem to have nothing to do 
with our genes, such as the languages we speak and the clothes 
we wear. In between are intermediate traits, like intelligence or 
shyness, that seem to have some genetic and some environmental 
components. For example, books and magazine articles often 
claim that intelligence is 50 percent genetic and 50 percent envi
ronmental (or 70 percent genetic, or 30 percent, depending on 
the point the author is trying to make). 

But this is the wrong way to think about traits, Moore in
sists. Of course our genes are involved — how could they not be? 
But from the moment of conception on, genes function only in 
response to the environment around them. At first this environ
ment is limited to the fertilized egg, in which various proteins and 
signaling molecules interact with the genes and cause them to ex
press particular proteins. Later, when the egg begins to divide 
and attaches itself to the uterine wall, the environment becomes 
more complicated. Now the developing embryo can be influ
enced by many different environmental factors: the health of the 
mother, exposure to viruses or chemicals like alcohol, the foods 
the mother eats, immune reactions between the mother and em
bryo, the presence of a twin, even such factors as the season of 
conception or the sounds an embryo hears. Random events be
fore birth — even the division or movement of a single cell — 
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can send development down one pathway rather than another. 
"From the moment of conception," Moore writes, "environmen
tal factors and genetic factors are in an ongoing dialogue with 
one another about building a person. Each of these sets of factors 
brings its own necessary information to the conversation." 

When a child is born, the complexity of this dialogue in
creases by orders of magnitude. Now the influence of the envi
ronment is ubiquitous, with countless and unpredictable effects. 
Even in traits that seem to be wholly the product of our genes, 
closer examination reveals the environment's critical role. Hair 
color, for instance, is influenced by the amount of copper in the 
cells that produce hair. If a person's diet includes very little cop
per, hair color progressively lightens. 

How we walk is another example. "When people say there 
are certain traits that appear to be unaffected by the environ
ment, it's because there are certain characteristics of all hu
man developmental environments that are identical," Moore 
says. "For instance, it seems like our tendency to walk, our two-
legged gait, is genetically programmed, and people who used 
to study motor development talked about a thing called a 
central pattern generator in the brain that was responsible 
for our two-legged gait. But it turns out that when the astro
nauts got to the moon they discovered that it was really in
efficient to try to walk with that gait in a low-gravity environ
ment, so they immediately stopped walking and started the kind 
of hopping movement that you see in films. Obviously this has 
never been tested, but I assume that if you raised humans in 
a low-gravity environment, they would walk differently than 
we do." 

Research with laboratory animals confirms the pervasive in
fluence of the environment on the development of traits. For ex
ample, many monkey species are so terrified of snakes that it has 
been considered an inborn trait. But monkeys that are born and 
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raised in a laboratory and fed a diet consisting only of fruits and 
monkey chow are not afraid of snakes. Remarkably, though, lab
oratory-raised monkeys who are given a single live cricket to eat 
each day, in addition to their fruit and monkey chow, are afraid 
of snakes. Something about the interaction between monkey and 
cricket triggers the development of the snake phobia. 

Or consider the eating behaviors of newborn chicks. When 
they are just two days old, chicks will approach, pick up, and eat 
mealworms they see on the ground — a seemingly innate trait if 
there ever was one. But if the chicks' feet are covered with cloth 
"shoes" that permit them to walk but not to see their toes, most 
of the chicks just stare at the worms, one eye at a time. Even with 
a trait that is critical to survival and would therefore seem to be 
hard-wired in the brain, the role of the environment is essential. 

In fact, all our traits work this way, says Moore. The genetic 
and environmental influences on a trait cannot be separated. The 
only logical thing to say is that genes are 100 percent responsible 
for our traits, and experiences are also 100 percent responsible 
for our traits. Therefore, scientists cannot hope to parse a trait 
into an environmental component and a genetic component. The 
best they can do is to study how genetic and nongenetic factors 
interact at specific moments to produce a very specific behavior 
or characteristic. 

This view of life, which Moore calls the developmental sys
tems perspective, has important implications for human behav
ioral research. For example, Moore contends that studying the 
genetic factors contributing to a broad trait like "mathematical 
talent" makes no sense because the effects of genes and experi
ences are far too intertwined to untangle. Therefore, the question 
"Is mathematical talent inborn or learned?" is not a scientific 
question. Researchers will have to focus on much more specific 
skills. "The right thing to do would be to break mathematical 
competence down into things like visualization, computation, 
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and other factors — who knows what they are, it's so early in 
the process. Conceivably you could look at the contributions of 
genes and environments to each factor. There has to be some sort 
of genetic contribution to these traits — there is to every trait — 
but I don't think anyone has even come close to figuring out what 
that might be." 

The proper way to think about human traits, Moore says, is 
to treat nature and nurture as a single system. Our traits emerge 
as a result of interactions among all of these factors. The infor
mation that contributes to the construction of a trait is distrib
uted throughout the system, so no one part of the system can ac
count for a trait. The trait arises from the system as a whole, not 
from part of it. 

V 
Of the 119 individuals who had been on U.S. teams as of the 
Forty-second Olympiad, no one was as accomplished as Reid 
Barton. He attended his first training camp the summer after sev
enth grade. Following his freshman year he was on the Olympiad 
team that finished third in Taiwan, where he was awarded a gold 
medal. (The top twelfth — about forty of the five hundred com
petitors at a typical Olympiad — win gold medals.) The next 
year, as a sophomore, he won a gold medal in Romania, as he did 
the following year in Korea. If Reid were to win a gold medal at 
the Forty-second Olympiad, he would become the first person in 
the history of the event to win four gold medals. 

Reid became interested in mathematics at a very young age. 
He taught himself calculus when he was nine and scored a perfect 
5 on the mathematics advanced placement exam when he was 
ten. He also was an accomplished pianist and cellist; at the train
ing camp he often passed the time by playing Chopin quickly and 
loudly. Media accounts of his achievements often describe him as 
home-schooled, but that's not really accurate. In fact, he's omni-
schooled. After elementary school, he began taking a combina-
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tion of high school and college courses that he, his parents, and 
an unusually cooperative public school system arranged. Tall, 
blond, skinny, not an athlete but not at all clumsy (he more than 
held his own in Ultimate Frisbee games), Reid came across as a 
friendly, reserved, ail-American kid. 

Problems one and two took Reid almost two hours, though 
he was sure of his solutions once he finished them. Then he 
confronted the puzzling simplicity of problem three. Problems 
that involve sorting objects into categories fall into a branch of 
mathematics known as combinatorics. The field originated in the 
study of probability by Pierre de Fermat, Blaise Pascal, and other 
seventeenth-century mathematicians, who were inspired not by 
the beauty of the math but by a very practical concern: they 
wanted to calculate the odds associated with gambling. 

During the eighteenth and nineteenth centuries, combina
torics was something of a mathematical backwater. Its associa
tion with gambling accounted in part for its lack of status, but 
more fundamental forces were also in play. Combinatorics deals 
with discrete entities, like the cards in a deck or socks in a drawer. 
But most of the important problems being investigated by mathe
maticians at that time involved continuous entities, like lines 
or surfaces. Mathematicians developed many general techniques 
to analyze such problems, particularly the methods of calculus. 
They found far fewer general techniques to analyze problems in
volving discrete entities, because discrete objects can have so 
many different properties and can be arranged in so many dif
ferent ways. Each problem has to be broken down into its con
stituent pieces, from which a useful pattern may or may not 
emerge. 

In the twentieth century combinatorics staged a comeback 
for one overriding reason: the invention of electronic computers. 
The objects manipulated by computers are discrete, not continu
ous. They are the Is and Os of on-off switches, not the smooth 
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curves of continuous surfaces. To analyze the capabilities of 
computers, mathematicians had to develop new ways of deal
ing with noncontinuous objects, and that need reinvigorated the 
field of combinatorics. 

Reid insists that his experience with computers played no 
role in his solution to problem three, but in fact he is as proficient 
at programming as he is at math. During his high school years he 
had a part-time job in the laboratory of Charles Leiserson, a 
computer scientist at MIT. At first he worked on Clikchess, one 
of the top chess-playing programs in the world. When Leiserson 
took a two-year leave of absence to work at Akamai Technol
ogies in Cambridge, Reid went with him to work on the com
pany's Internet software. Reid has "an excellent sense of aesthet
ics," Leiserson told writer Dana Mackenzie. "His code is clean, 
well organized, simple, and easy for other people to modify. It's 
unusual to find that ability in someone so young." 

The trick with many combinatorics problems is to arrange 
the entities in a way that demonstrates the desired property. But 
because every problem is different, no general rules exist for de
riving such an arrangement. You just have to think clearly and 
deeply. 

Reid looked at the pieces of problem three for a long time. It 
states that 21 boys and 21 girls have taken a math test, and each 
of the 42 contestants solved at most six problems, though the to
tal number of problems on the test is not specified. Furthermore, 
if you took any boy and any girl, you could find a problem that 
both of them had solved. 

Suddenly Reid thought of something. He sketched out part 
of a table. At the top of each column he listed one of the 21 boys. 
Then he put the 21 girls into the rows of the table. In each box he 
put a letter representing one of the problems solved by both that 
girl and that boy. (The specific letter chosen in this solution is ar
bitrary, though the appendix contains an interesting story about 
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the choice of solved problems.) The full table contained 21 x 21, 
or 441, boxes; the upper-left-hand part would look like this: 

The letter D in the upper left-most box represents a problem 
solved by both boy 1 and girl 1. Problem D was also solved by 
girl 1 and boy 3 in common and by girl 3 and boy 1 in common. 
Because problem three states that each girl-boy pair solved at 
least one problem in common, Reid knew that all 441 boxes 
would contain a letter. 

The other key piece of information was that each contestant 
solved at most six problems. Therefore, only six different letters 
could appear in any given row or column of 21 boxes. But think 
about the problem of distributing six letters among 21 boxes. If 
five of those six letters each appeared just twice in a row of 21 
boxes, thus filling 10 boxes, the other 11 boxes would have to 
contain the sixth letter. In general, six distinct letters can be 
placed in the 21 boxes in a row only if at least 11 of those boxes 
contain letters that appear three or more times in that row. 

Now Reid imagined going through each row and coloring 
red all the boxes with letters that appear at least three times in 
that row. For instance, the part of the table shown above has the 
B's colored in for girl 2, because the letter B appears at least three 
times. Applying the same rule to girl 3's problems would mean 
coloring in the A's in her row. Reid knew that at least 11 boxes in 
each row must be colored red, because of the constraints on dis-
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tributing six letters among 21 boxes. And because the table has 
21 rows altogether, at least 11 X 21 or 231 boxes must be col
ored red. 

Reid then applied the same logic to the columns, except that 
he colored the boxes blue. In other words, in each column all the 
boxes with letters that appear at least three times in that column 
would be blue. By the same reasoning as for the girls' problems, 
at least 231 of the boxes had to end up blue. 

But the table contains only 441 boxes. If at least 231 are col
ored red, and at least 231 are colored blue, then some of the 
boxes must be colored both red and blue. The letter in each of 
these doubly colored boxes represents a problem solved by at 
least three girls and at least three boys. Proving that such a prob
lem exists solves problem three. 

To a mathematician, watching the construction of a proof 
like this is best compared to watching someone compose a piece 
of music. The problem solver has to sense exactly which parts of 
a problem warrant attention. He or she has to grasp how the 
pieces of a proof cohere. The expenditure of effort needs to be 
balanced with the task, so that the subtle interplay of internal 
thoughts and the external challenge suggests what to do next. 

Maybe that's also the best way to think about talent — as a 
musical composition. In both its development and its display, tal
ent then would consist of parts played by the instruments of an 
orchestra. A part could be removed, but doing so would make 
the music incomplete, unbalanced. At times a single musical 
theme or instrument may rise to the surface, but soon the solo 
voice subsides, lost in the swirling counterpoint of sound. 



h- i n t e r l u d e : 
An Afternoon to Rest 

At exactly 1:30 P.M. the blare of the air horn again filled the cav
ernous interior of the Patriot Center at George Mason Univer
sity. The 473 competitors put down their pencils. Some smiled 
ruefully at their papers and shook their heads, as if promising 
themselves never to be fooled by that trick again. A few others 
pushed angrily away from their desks. But most simply gathered 
the papers on their desk and placed them in the envelope that 
had held the questions. Slowly and stiffly they stood up. 

Outside the arena the Olympians milled through the crowd, 
looking for their teammates. A few embraced, crying tears of an
ger or relief. Others shook hands, as they had before entering the 
arena. The assistant coaches and the guides had received the 
problems partway through the exam, but few had yet come up 
with solutions. Still, the team members clustered around the as
sistants and peppered them with questions. As competitors heard 
about steps they had overlooked, or approaches that seemed 
promising, or pivotal points in possible solutions, they groaned 
with frustration and asked how they could have been so stupid. 

The American team was pleased but not overjoyed with 
its performance. Reid was confident that he had gotten perfect 
scores on all three problems. Ian knew he had solved problems 
one and two, but he had run into a glitch with problem three. 
The logic of his solution contained a small gap — which ulti-
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mately would cost him a point and keep him from getting a per
fect score for the first day. Tiankai had aced problem one and had 
gotten very close to solving problems two and three, but in both 
cases his proofs were slightly flawed. He would have to hope for 
partial credit. 

As each team made its way toward the cafeteria, they asked 
other teams, " H o w did you guys do?" And in this way the jock
eying for position commenced. After the first day, teams have a 
distinct advantage in conveying the impression that they have 
done well. Until the judging is concluded, several days after the 
exam, no one knows the results. And it can be extremely discour
aging for a strong team to hear from another team that the prob
lems were easy, even if they weren't. 

The Koreans were especially effective at this game. At lunch 
they casually mentioned that every member of their team had 
done well. This seemed unlikely, given the difficulty of the prob
lems, but the news swept through the cafeteria in minutes — the 
Koreans say the problems were easy. 

The Americans were actually more worried about the 
Chinese than the Koreans. The Chinese were sitting together at 
lunch, talking among themselves and seeming quietly confident. 
None of them knew much English, so information had to pass 
through third parties. But the buzz in the cafeteria was that all 
of the Chinese thought the morning had been an overwhelming 
success. 

This was troubling news to the U.S. team members, who 
knew that they had lost a few points that morning. The U.S. team 
traditionally has been very strong but not dominant in the Olym
piad. In the twenty-six events in which the United States had 
competed since 1974, the team had finished in the top five 
twenty-three times. But the United States had finished in first 
place just four times — in Yugoslavia in 1977; in 1981, the other 
time the Olympiad had been held in the United States; in Poland 
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and in Hong Kong in 1994, when everyone on the team had re
ceived a perfect score. Still, this was the strongest team the United 
States had fielded in years. Every member felt that the team 
had at least a chance to beat the Chinese, the Russians, the 
Romanians, and the other strong teams. And to finish first in the 
world on their home field — that would be a glorious triumph. 

After lunch the Olympians wandered back to the dorms. 
The impromptu soccer game in the courtyard promptly resumed, 
though none of the American kids were playing — they didn't 
have much interest in soccer. The soccer players, shouting at each 
other in a dozen different languages, kicked the ball with a spe
cial vengeance. 

Later in the afternoon Melanie Wood and the U.S. team 
members gathered in a common room overlooking the soccer 
game. They talked about the problems for a while and then fell 
silent. "What should we do?" someone asked. 

"Let's play a game," Melanie suggested. 
"Which game?" 
"How about Twitch?" she replied. 
Twitch must have been invented by a sadistic math Olym

pian. A deck of specially marked cards is dealt face-down to the 
players, who sit in a circle. When a player flips a card into the 
middle of the circle, the symbols on its face indicate who must 
play the next card. The card might read R, in which case the per
son one place to the right must play next, or 2L, sending play to 
the person two places to the left. But some cards reverse the di
rection of play or make the game go in reverse. Twitch requires 
lightning-fast reflexes, because if you don't flip your card onto 
the stack before another player realizes you should play next, 
that person can force you to take all the cards in the stack. The 
first person to get rid of his or her cards wins the round. 

The Olympians sat cross-legged on the floor, and the game 
began. The room was extremely warm, so someone opened a 
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window. The shouts of the soccer players floated up from the 
courtyard. Some members of the Colombian team, sleeping on 
sofas in the common room, were so exhausted that the noise 
didn't wake them. A writer who had been following the U.S. 
team was one of the players. As he tried to keep up with the end
lessly flashing cards, his head felt as if it were about to explode, 
so difficult was the struggle not to lose. He began to sweat, partly 
because it was so hot in the room, partly because he was falling 
farther and farther behind. 

The kids on the team, on the other hand, seemed to get 
calmer as the game got more intense. They played their cards 
quickly, but their movements were concise, economical, con
trolled. While the cards were being dealt, they sat with a quiet 
concentration, waiting for the game to begin. 

Reid Barton won almost every round. 



7 • c r e a t i v i t y 

All six members of the U.S. Olympiad team were superb pianists, 
and at the training camp one or another of them could often be 
found playing the piano in the common room. But all tended to 
stick to the classical music they had learned — except one. When 
David Shin sat down at the piano, he did not launch into a Bee
thoven sonata or a Chopin polonaise. Instead, he sounded out a 
melody — something overheard earlier that day, maybe, or a 
musical phrase running through his mind. Bending low over the 
keys, his eyes almost closed, he would add to the melody — a 
bass line, some harmonies. He would invert the notes and play 
them faster or slower, alter them slightly, or try a new accompa
niment. Over and over he would take the melody apart and put it 
back together, until the other Olympians became exasperated 
with his noodling. David ignored them. "Just sitting at the piano 
is relaxing for me," he says. "If I'm doing math and need a break, 
I'll go play the piano for half an hour." 

Rearranging things was the key to solving the formidable-
looking problem that opened the second day of the Olympiad: 

Let n be an odd integer greater than 1 and let C i , c2 c„ be 

integers. For each permutation a = (oi, a2,..., a„) of { 1 , 2, 
..., n}, define 

Prove that there exist distinct permutations b and c such that 

n\ divides S(b) - 5{c). 

126 
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When people think about tough math problems, this is what 
they have in mind. Anyone without a solid grounding in math
ematics will have a hard time figuring out even what the problem 
is asking. It features a complicated sum — denoted by the capital 
Greek letter sigma — that involves adding n pairs of numbers 
that have been multiplied together. It mentions permutations — 
different ways of ordering distinct objects. (In this problem a, 
b, and c represent not single numbers but permutations of the 
whole numbers from 1 ton.) And at the end the problem men
tions the number «!, which is not a startled n but mathemati
cal shorthand for the number n factorial, while is defined as n X 

(n - 1) X (« - 2) x . . . x 3 x 2 x 1. Even among people 
who understand the mathematical intent of this problem, few 
would have any idea how to go about solving it. Yet David 
solved it with a single page of elegantly concatenated equa
tions. As with all of the problems on the Forty-second Olympiad, 
problem four could be solved in several ways. The approach that 
David took was a model of mathematical rigor, concision, and 
creativity. 

The kids on any U.S. Olympiad team differ greatly from one 
another. They are more or less outgoing, more or less athletic, 
more or less intuitive, even more or less "talented." But they all 
have one thing in common: an amazing mathematical creativ
ity. The problems on any Olympiad cannot be solved by plug
ging numbers into memorized formulas. They require sidelong 
attacks, inspired guesses, flights of mathematical fancy. In that 
respect, the members of an Olympiad team are not only mathe
maticians: they are artists working in a medium of form and 
numbers. 

V 
A scientific explanation of human creativity would seem to be a 
contradiction in terms. Science is the study of regularities in na
ture. Scientists observe events and try to conceive of underlying 
mechanisms that explain those events. They then test their hy-
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potheses against their observations in an effort to develop well-
grounded explanations for some aspect of our existence. 

Creativity would seem to be the opposite of regularity. It 
seeks new perspectives on familiar surroundings, novel ways of 
interacting with the world, unexplored intellectual and emo
tional terrain. Even the means of achieving creativity can be ap
proached creatively, as when artists, musicians, and even mathe
maticians began to use computers to generate new ideas and 
insights. 

A traditional way of examining creativity has been to study 
the people who exhibit it. In the 1950s and 1960s psychologists 
at the University of California's Institute for Personality Assess
ment and Research in Berkeley compared highly creative and less 
creative individuals in a variety of fields, including mathematics. 
Highly creative people, the researchers found, tended to exhibit a 
distinctive constellation of traits. They were often iconoclasts 
who did not especially care what other people thought of them 
(though, paradoxically, many creators yearn for the approval 
of those whom they consider their peers). They tended to have 
strong egos and were often considered arrogant. They usually 
worked very hard in their chosen fields yet also had wide-ranging 
interests. Their internally imposed standards were very high, and 
they set challenges for themselves that forced them to struggle to 
achieve their goals. 

Interestingly, researchers have found that creativity is not 
tightly associated with IQ scores. Some people who do well on 
IQ tests are not very creative, and some people who are highly 
creative do not score particularly well on the tests. It may be the 
case that a certain threshold of mental acuity is required for high 
levels of creativity — in his book Creating Minds, psychologist 
Howard Gardner sets the threshold at an IQ of about 120. But 
some creative people, such as artists with savant syndrome, have 
IQ levels well below average. 
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Correlations between creativity and character are intrigu
ing, but they don't tell us much about the nature of creativity. 
Some creative people exhibit few of the traits psychologists asso
ciate with creativity. And, as with all correlations, the direction 
of causality is uncertain. Do these traits cause people to be cre
ative, or do creative people tend to develop these traits? 

Dean Keith Simonton, a psychology professor at the Univer
sity of California at Davis, has been thinking about creativity for 
much of his career. In the early 1970s, his Ph.D. work at Harvard 
involved charting the ebb and flow of creativity throughout his
tory. He compiled vast lists of eminent creators and their ac
complishments and found that the overall creativity of a culture 
hinges on factors that may seem only distantly related to the lives 
of isolated poets, composers, and mathematicians. For example, 
political openness and pluralism seem to increase the amount of 
creativity in a society by exposing potential creators to a variety 
of cultural perspectives. A good example, says Simonton, is clas
sical Greece, which entered a period of tremendous creativity af
ter winning the Persian wars and beginning a series of intensive 
trading interactions with its Mediterranean neighbors. Similarly, 
when a formerly closed society opens to outside influences, a 
golden age of creativity can ensue. In a study of Japanese history, 
Simonton found that creativity soared when Japanese students 
studied abroad, when the nation interacted with foreign powers, 
or when it permitted individuals from other countries to immi
grate. When Japan's rulers limited foreign influence and travel 
abroad, creative momentum stalled. 

In recent years Simonton has been investigating the broad 
range of factors that come together to produce notable individ
ual achievements. He has studied the productivity of classical 
composers, the success of U.S. presidents, independent discover
ies in science, and eminent individuals in minority cultures. He 
has decided, after this wide-ranging examination, that the best 
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way to think about creativity is to compare it to a different phe
nomenon: biological evolution. In nature, evolution occurs 
through a three-step process. The first step is the generation of 
novelty. Organisms are born with traits different from those of 
their parents and siblings because every organism has a unique 
combination of genetic variants (even clones have a few genetic 
differences) and undergoes unique experiences as it develops. 
The second step is selection. Some organisms thrive because they 
have traits that are useful in their environment, while less advan
taged organisms falter. The third step is replication. Organisms 
that thrive tend to have more offspring than do their less success
ful siblings, so they have more opportunities to pass on their ad
vantageous traits. Over time this process gradually produces or
ganisms that are increasingly well suited to the physical, 
biological, and cultural environments in which they live. 

Simonton believes that creative acts — the production of 
something that has never been produced before — occur 
through a similar three-step process. The first step is the genera
tion of new ideas. In Darwinian evolution, new biological traits 
arise through essentially random processes as genes mutate, re
sort themselves, and interact with the environment in each new 
generation. The origins of new ideas can be equally random, ac
cording to Simonton. The mind takes apart old ideas and obser
vations and juxtaposes their elements in new ways. The process 
is "unpredictable and chaotic," he says. "You have to try lots of 
things and go up lots of blind alleys. You generate a whole bunch 
of ideas that are loosely connected, because you don't know in 
advance whether they're going to work or not." 

In his book Origins of Genius: Darwinian Perspectives on 
Creativity, Simonton quotes the psychologist William James's de
scription of the creative ferment: 

Instead of thoughts of concrete things patiently following 
one another in a beaten track of habitual suggestion, we 
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have the most abrupt cross-cuts and transitions from one 
idea to another, the most rarefied abstractions and discrimi
nations, the most unheard of combination of elements, the 
subtlest associations of analogy... . [W]e seem suddenly in
troduced into a seething cauldron of ideas, where everything 
is fizzling and hobbling about in a state of bewildering ac
tivity, where partnerships can be joined or loosened in an 
instant, treadmill routine is unknown, and the unexpected 
seems only law. 

The elements of a new idea may be words, images, melo
dies, equations, emotions, snippets from dreams — anything the 
mind can imagine or feel. When Tiankai was solving problem 
one, for example, he had the image of a 30-degree angle in his 
mind. When he saw how the angle could be superimposed on the 
triangles he had drawn, he had all but solved the problem. In 
cracking problem two, Ian thought of Jensen's inequality and 
suddenly discovered a particularly elegant solution. 

Sometimes this juxtaposition of ideas occurs consciously. 
Some visual artists try to overlay disparate images to loosen their 
preconceived ideas about how things should look. Or a creator 
tries to hold two contradictory ideas in his or her mind simulta
neously to generate a cognitive tension that produces new in
sights. Mathematicians sometimes use similar tricks to spur cre
ativity. In solving problem two, for example, Ian might have 
consciously gone through a list of possibly relevant memorized 
equations. 

But more often the process seems to occur subconsciously, 
which is how Ian said he arrived at his solution. You're returning 
from the bathroom or walking along a path or boarding a bus, 
and suddenly the solution is there, elaborate and complete, as if 
bequeathed to you by a kindhearted muse. 

A classic experiment that has been used for decades to study 
creativity was developed by the psychologist Norman Maier at 
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the University of Michigan in the 1930s. A subject is led into a 
room that has two strings hanging from a high ceiling. He is told 
that the task is to tie the two strings together. The strings are long 
enough to be tied, but if the subject grabs the end of one and pulls 
it toward the other, the end of the other string always remains 
just out of reach. How can the problem be solved? 

In the original experiment various objects were scattered 
around the room, and the subject was told that any of them 
could be used in the solution. But only one of the objects, a pair 
of pliers, is actually useful. By tying the pliers to the end of one 
string, the subject could start that string swinging like a pendu
lum. He or she then could hold the other string and, when the pli
ers swung within reach, grab the pliers and the connected string, 
remove the pliers, and tie the strings together. 

Many people have great difficulty solving this puzzle. But 
the experimenters found that certain clues could make it easier. 
For example, if the pliers were replaced by a plumb bob, more 
people figured it out, evidently because the bob suggested some
thing that should be tied to the end of a string. Women did better 
at solving the problem if the pliers were replaced by a scissors. 

But the most interesting variant involved the subconscious 
mind. If the investigator doing the experiment walked into the 
room and "accidentally" brushed up against one of the strings so 
that it started swinging, the subjects were much more likely to 
solve the problem. When asked how they arrived at the solution, 
however, they usually failed to recognize the swinging string as a 
clue. They said the solution just popped into their minds. 

Many scientists, mathematicians, composers, writers, and 
other creative artists have reported moments of epiphany when 
the solution to a problem suddenly materialized in their 
thoughts. Charles Darwin experienced such a moment, suddenly 
realizing how the selection of organisms with advantageous 
traits would lead to the origin of new species. " I can remember 
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the very spot in the road, whilst in my carriage, when to my joy 
the solution occurred to me," he wrote in his autobiography. 
Such moments are so startling and wonderful that many creative 
people have developed techniques to kick-start the process. Da
vid Shin plays the piano. Many creators go for long walks. A mo
ment of rest sometimes can free the mind. On the first day of the 
Olympiad, Ian read through the problems, put his head on his 
desk, and took a short catnap. A good night's sleep can be even 
more productive. " I remember waking up knowing the solution 
to a problem," David says. " I was working on it the night before, 
a number-theory problem. I couldn't get it, so I went to sleep. 
When I woke up the next morning I thought about it for a mo
ment and the answer was right there." 

Many creative people have learned how to relax and let 
their minds wander so that their subconscious is freed to gener
ate ideas. When you focus your entire attention on a problem, 
your mind may dwell exclusively on what it already knows, leav
ing no room for new ideas. "One of the main predictors of cre
ativity is being open to what is happening around you," says 
Simonton. "You're an open system rather than a closed system. 
Maybe you hear something that isn't immediately relevant, but it 
sets your mind working in a direction in which you weren't going 
to go. That kind of flexibility and openness is crucial for success
ful problem solving." 

If creativity does require the novel juxtaposition of ideas, 
that might help explain some of the traits exhibited by highly cre
ative people. Their defiance of convention and authority might 
free their minds to consider new combinations of ideas. Though 
they are able to focus intently on problems for long periods, their 
wide range of interests may suggest unusual approaches to a 
problem. Studies have shown that creative people often are fa
miliar with more than one culture or language and that they tend 
to value complexity, diversity, and different viewpoints. "They 
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have a tolerance of ambiguity," says Simonton, "which allows 
them to tolerate the fact that they're not going to find a solution 
right away. What keeps a lot of people from being creative is that 
they're too impatient. They want a solution fast. And often they 
want a solution that meets certain a priori specifications, even 
though those a priori specifications may rule out the only solu
tions that are possible. As a consequence, they can't generate 
the various combinations of ideas that they need to find those 
particular combinations that are most likely to lead to a solu
tion." 

All of the math Olympians were experts in generating ideas 
that might prove useful. Even when they were not doing math, 
they often seemed to be exercising their creative faculties. At the 
training camp, for example, they rarely played regular chess, 
which they considered too boring, but they incessantly played 
chess variants. In the game known as suicide chess, the object is 
to be the first player to lose all your pieces. In atomic chess, 
whenever a piece is captured, so are all the pieces on adjacent 
squares. The board in toroidal chess is connected from side to 
side and from front to back, so a piece can move off one side of the 
board and reappear on the other side. In proxy chess each piece has 
the moves of the piece to its immediate left. And the Olympians 
were especially fond of bughouse, a devilishly complex game 
played against the clock with two chessboards, in which cap
tured pieces immediately reenter the game on the other board. 

V 
The idea that creativity begins with the novel juxtaposition of 
ideas immediately runs into one major objection. As soon as you 
consider more than a few discrete items, the number of ways of 
combining those items becomes very large. The number of dis
tinct permutations of n different things is n factorial or n\ — the 
same number that comes up in problem four. This number is 
manageable when n is small. For n = 3, n\ is 3 x 2 X 1 = 6. For n 
= 4, n! is 24. But say that you're combining ten things in dif-
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ferent ways. The number of distinct permutations of those ten 
things is 1 0 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 or 3,628,000. 
That's why a sentence exactly the same as this one has almost 
certainly never before been written in all of human history. 
The twenty-two words in that sentence can be recombined in 
more than one sextillion ways (1,124,000,727,777,607,680,000 
ways, to be exact). Only a tiny fraction of those combinations 
will make any sense, but even this small fraction must amount to 
many hundreds or thousands of different sentences. The explo
sion of possible combinations is also the reason songwriters will 
never run out of melodies — and they have the extra advantages 
of being able to vary the duration and volume of each note and 
the instrument on which a note is played. 

With so many ways of combining things, creators cannot 
consider every possibility. They must go through a selection pro
cess by which they first consider the most promising options. 
This is the second of Simonton's three steps in creativity. "To 
some extent, you preselect the range of elements you're going to 
consider," Simonton says. "But it's a broad selection process, be
cause you're saying that out of the one hundred possible ways to 
solve a problem, these dozen are the best. Then, when you find 
yourself in a situation where you can't solve the problem with 
those dozen, you start broadening your scope." 

The game of chess offers a good example. When expert 
players face a given situation in a game, they don't think of every 
possible move they could make. They consider a range of moves 
that are most likely to be effective in those circumstances. That's 
one reason why grandmasters sometimes have so much difficulty 
playing against computers, explains Simonton. Computers can 
consider a broader range of possible moves than can humans, in
cluding moves that human players would immediately discard as 
useless. But every once in a while one of those seemingly useless 
moves is actually very effective. "When you play a human being, 
you know the range of strategies they're going to use," says 
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Simonton. "But computers will sometimes come out of the blue 
with a strategy that you've never seen before. And then you're 
put in a situation where you have to consider all possible moves, 
which is something you don't normally need to do as a chess 
player." 

The process of selecting ideas from a range of possibilities 
is inevitably idiosyncratic. It depends on many aspects of a per
son's personality and varies widely among individuals. People 
use their own knowledge, previous experiences, foresight, intu
ition, aesthetic judgments, and blind luck to make decisions. 
Sometimes they use all at once, blending the rational and irratio
nal in proportions difficult to discern. 

The idiosyncratic nature of creativity is apparent in an 
Olympiad. Each competitor has a slightly different way of ana
lyzing a problem and looking for a solution. A visually creative 
thinker such as Tiankai might treat problem four spatially, con
verting the numbers from 1 to n into a ring and matching them 
with other numbers. Or someone like Reid might place the num
bers in a grid, as if they were being analyzed by a computer. This 
choice is in part an aesthetic one, a matter of personal preference. 

One interesting way to think about how ideas are selected is 
to look at individuals in whom the process is to some extent bro
ken. Throughout history, commentators have speculated about 
the link between creativity and mental illness. "No great genius 
has ever existed without some touch of madness," wrote the Ro
man philosopher Seneca in On the Tranquillity of the Mind. 
"Genius is to madness near allied / And thin partitions do their 
bounds divide," stated the poet John Dryden. " I have long had a 
suspicion," wrote the British psychiatrist Henry Maudsley in 
1871, "that mankind is indebted for much of its individuality 
and for certain forms of genius to individuals [with] some predis
position to insanity. They have often taken up the bypaths of 
thought, which have been overlooked by more stable intellects." 



c r e a t i v i t y 137 

From Simonton's perspective a link between madness and 
creativity makes sense. A touch of madness may enable creators 
to combine ideas in unexpected ways. Or the range of ideas 
may be less constrained in people whose brains travel little-used 
paths. Consider the writing of Philip K. Dick, who was born 
in Chicago in 1928, moved to California as a child, and often 
seemed to veer close to madness in his personal life. In his 1981 
novel Valis, Dick wrote a long appendix that contains writing 
like this passage: "45. In seeing Christ in a vision, I correctly said 
to him, 'We need medical attention.' In the vision there was an in
sane creator who destroyed what he created, without purpose; 
which is to say irrationally. This is the deranged streak in the 
Mind; Christ is our only hope, since we cannot now call on 
Asklepios." 

And so on through references to Zeus, Apollo, Elijah, 
Pascal, the Empire, the hologramatic universe, homoplasmates, 
the divine syzygy, to the final sentence of the book: "But under
neath all the names there is only one Immortal Man, and we are 
that man." Dick died in obscurity and poverty in 1982, though 
since then his work has undergone a revival (the movies Blade 
Runner, Total Recall, and Minority Report were all based on 
short stories by him). He said that he wrote Valis and two related 
novels after a mystical experience in March 1974 that he de
scribed as "an invasion of my mind by a transcendentally ratio
nal mind." Yet few people would consider Dick's work rational. 
If an editor received one of his manuscripts without knowing the 
author, it almost certainly would be relegated to the dusty pile of 
submissions from lunatics. 

In mathematics a well-known example of a possible link be
tween madness and creativity can be found in the work of the 
mathematician John Nash at Princeton. Nash tried to approach 
familiar problems from unconventional directions. He tended 
not to read deeply in the mathematical literature because he did 



138 a t t r i b u t e s 

not want to be distracted by other people's ideas. According to 
his biographer Sylvia Nasar, his "flashes of intuition were non-
rational" at the same time that he was a "compulsively rational" 
person. She wrote, " A predisposition to schizophrenia was prob
ably integral to Nash's exotic style of thought as a mathema
tician." 

These examples and others like them are suggestive, but 
they can't be the whole story. For one thing, most mental illness 
is incapacitating rather than inspiring. When Nash descended 
into full-blown schizophrenia shortly after his thirtieth birthday, 
he was unable to continue doing creative mathematical work. 
The selection process in his mind seemed to lose its grip entirely, 
so that he thought he saw secret messages in newspaper head
lines or in people's neckties. At that point his mind really did 
seem to be considering all 3,628,000 possible combinations of 
ten items. 

Furthermore, most eminent creators — including mathema
ticians — exhibit no signs of mental illness. On the contrary, 
many are very well adjusted, which accords with another view in 
psychology: that creativity is the natural product of a balanced, 
self-fulfilling personality. Certainly none of the Olympians on the 
team demonstrated any sign of mental problems, and it is dif
ficult to think how they could. The tremendous competitive pres
sures of the qualifying process would almost certainly weed out 
any but the most resilient personalities. 

In his groundedness, David was typical of all the team mem
bers. Growing up in West Orange, New Jersey, he was more in
terested in music than math. " I play the piano, drum set, French 
horn, baritone horn," he says. " I played in every musical group 
the school offered — jazz band, marching band, pit orchestra, 
brass ensemble." Only after finishing with a high score in Math-
counts during middle school did he decide to devote himself 
to becoming a better problem solver. "Most of the math I've 
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learned I've learned on my own," he says. "I've never had a 
coach. My father could help me up through Mathcounts, but 
after that I was on my own. The thing I've most appreciated 
about my parents is that they've never pushed me. I have a friend 
who used to be real good when I was in seventh grade. When I 
got first in the school in Mathcounts, he got second. But his par
ents pushed him so much that pretty soon he didn't care. My par
ents let me discover my love of math on my own. I'm really 
thankful for that." 

V 
Generating and selecting novel ideas are essential steps for cre
ativity. But they mean nothing without what Simonton sees as 
the third step in the creative process. A new idea has to encoun
ter a receptive environment so that it spreads from mind to mind. 
Otherwise it dies with the individual. (This aspect of creativ
ity applies more to mathematical research than to competitive 
mathematics, in which the solution to a problem is already 
known to exist. In competitive math, replication often builds on 
success.) 

The ways in which new ideas are replicated can be as idio
syncratic as their generation and selection. Sometimes people im
mediately recognize the value of an innovation. To use a techno
logical analogy, once color televisions were developed everyone 
saw that they were an obvious improvement over black-and-
white sets. As they became more affordable, they replaced black-
and-white televisions almost everywhere. In evolutionary biol
ogy, this kind of rapid replacement of one variant with another is 
called a selective sweep. 

Sometimes an idea takes longer to gestate. To take another 
technological example, portable phones first became available in 
the 1960s and 1970s. But the first ones were bulky contraptions 
more like radio receivers or walkie-talkies. Gradually they be
came smaller and cheaper. At the same time, people became more 
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comfortable with the idea of talking on a phone while driving a 
car or eating dinner in a restaurant (maybe too comfortable), so 
their use spread. 

A third possibility is that an idea is ahead of its time. The 
facsimile machine, for example, was invented more than a cen
tury and a half ago, in 1842. But its use was severely limited be
cause it was necessary to have compatible machines on the send
ing and the receiving ends. Only when a widespread network of 
fax machines emerged in the 1980s did faxes go from being a rar
ity to commonplace. 

The replication of ideas depends on so many factors that 
predicting whether a new idea will succeed seems impossible. 
But one generalization seems secure. Only if an idea is born into 
a cultural environment that needs or desires it will it succeed, al
though the desire or need may not become apparent until the 
idea exists. The creator who is not addressing a need within soci
ety will remain unknown and unheralded. Creativity therefore 
depends on much more than the individual creator. It takes place 
as an interaction between an individual's capabilities and the so
cial environment. As the psychologist Mihaly Csikszentmihalyi 
has put it, the critical question is not "What is creativity?" but 
"Where is creativity?" 

The social dimension helps explain why bursts of creative 
activity occur at particular points in history. Circumstances arise 
that encourage innovators and produce receptive outlets for their 
ideas. Examples include the development of monumental archi
tecture in ancient Egypt, the classical period in music from 
Bach to Beethoven, the writing of the U.S. Constitution after the 
American Revolution, impressionist painting in France at the 
end of the nineteenth century, the creation of quantum mechan
ics in the first half of the twentieth century, and the worldwide 
popularity of American movies at the close of the twentieth cen
tury. In each of these cases, innovations arose through the actions 
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of individual creators. But an equally strong influence was the re-
ceptiveness to those creations (even if somewhat delayed) of the 
broader society. 

This view also can help explain why bursts of creativity 
sometimes occur within particular groups, including particular 
ethnic groups. Creators usually learn their craft from people 
whom they admire and emulate. These models and mentors are 
often members of their own social group, and thus particular 
groups can become known for certain kinds of achievements. 
Think of blues music among African Americans, chess among 
eastern Europeans, winemaking in France, or engineering in 
Japan. 

Finally, the social dimensions of creativity offer a somewhat 
different perspective on the products of "genius." Great accom
plishments do not exist in a social vacuum. They are created 
through an interaction between a creator and the individuals 
who perceive and acknowledge that work as extraordinary. In 
this sense the members of a society actively participate in the cre
ation of works of genius. No matter how isolated or detached 
from reality a creator may be, the link between that person's 
work and the broader society must remain strong for a new cre
ation to survive and prosper. 

V 
Maybe these observations can help answer a question asked by 
almost everyone who spends much time at U.S. math competi
tions. Why are so many of the competitors of Asian ancestry? 
The U.S. team at the Forty-second Olympiad was fairly typical of 
recent teams. Tiankai's family was from China, Ian's family was 
from Vietnam, and David's family was from Korea. In recent 
years about half the kids at the training camp and on the team 
have had Asian backgrounds, even though Asian Americans, in
cluding people with ancestors from Pacific islands, make up only 
about 3 percent of the U.S. population. 
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Questions about the academic achievements of Asian Amer
icans are not limited to math competitions. The group has a rep
utation as a "model minority" that excels academically. Asian 
Americans are overrepresented in gifted and talented classes 
from elementary school through high school. Compared with 
all other ethnic groups, including European Americans, Asian 
Americans have higher rates of graduation from high school, col
lege matriculation, and graduation from college. 

One possible explanation is that people with Asian ances
tors are biologically smarter. That is, maybe their brains are put 
together differently so that math, science, and other academic 
subjects are easier for them. Some fringe biologists have even 
concocted evolutionary just-so stories that seek to explain such 
capabilities. They say that the ancestors of today's Asians had to 
be smarter than other people to survive on the freezing cold 
plains of Asia during the Ice Age. Or that success on civil service 
exams (in China, at least) selected for intelligent people and en
abled them to have more children than others. 

This idea of Asian mental superiority has many problems. 
First, exactly who qualifies as an Asian? Do Asian Indians, who 
often — but not always — do well at Olympiads? Most of their 
ancestors lived in warm climates and never took civil service ex
ams. How about central and northern Asians like the Mongols 
and Siberians? They lived in even colder climates than did the an
cestors of the Chinese. And what about Native Americans, who 
are descended from Asians who migrated to the Americas during 
the height of the Ice Age? 

Also, the claim that everyone with Asian ancestors does 
well in mathematics and science is obviously overblown. Among 
Asian American students, only a small percentage excels in math
ematics and science, just as with students belonging to other 
ethnic groups. And the children of some Asian ethnic groups, es
pecially groups disadvantaged in Asia, have many of the same ac-
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ademic difficulties as do other disadvantaged groups. Some com
mentators have concluded, after careful reviews of census and 
other data, that the model-minority stereotype is as misleading 
and as counterproductive as other ethnic stereotypes. 

But the most convincing evidence comes from direct com
parisons of how different groups of children actually think. In 
the 1980s psychologist Harold Stevenson and his colleagues at 
the University of Michigan and in Japan and Taiwan studied 
groups of several hundred first-graders and fifth-graders in each 
of three cities: Sendai, Japan; Taipei, Taiwan; and Minneapolis. 
The researchers constructed a battery of tests carefully designed 
to detect differences in thinking abilities, not just differences in 
teaching methods or materials. The tests asked students to re
member a sequence of tones, match spatial patterns, recall lists of 
words or numbers, answer questions about a brief story, solve 
mathematics problems, and so on. 

Certain groups of children did somewhat better on particu
lar tasks. The Chinese children were better able to remember lists 
of numbers than the Japanese and American children, the Japa
nese kids did best at remembering tones, and the American kids 
did best at matching shapes. Taken together, however, the differ
ences among the groups were small — a conclusion confirmed 
by other tests of cognitive abilities conducted since then. Steven
son and his colleagues wrote: "The results suggest that the high 
achievement of Chinese and Japanese children cannot be attrib
uted to higher intellectual abilities, but must be related to their 
experiences at home and at school." 

If experiences make the difference, then what are these expe
riences? After all, if they make a difference for Asian American 
kids, they should work for everyone else. Stevenson and his col
leagues looked at this question in a series of follow-up studies 
and came to a strong conclusion. The critical factor in student 
achievement, they said, is parental attitudes. American parents 
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typically are content with their children's performance in school, 
even when that performance is far below international stan
dards. Among the parents of U.S. eleventh-graders interviewed 
in 1990, almost half said they were "very satisfied" with their 
child's academic achievement. The percentages of Chinese and 
Japanese parents reporting a comparable level of satisfaction 
were in the single digits. 

In general, Chinese and Japanese parents stress the impor
tance of working hard to succeed. They expect their children to 
do well in school and get good grades. Children learn from an 
early age to respect and defer to authority figures such as parents 
and teachers. They are told that if they do poorly in school, their 
performance will reflect badly not just on them individually but 
on their whole ethnic group. 

Surprisingly, however, Stevenson has found that the stereo
type of overstressed Asian students driven relentlessly by their 
parents to succeed is not accurate. On the contrary, his surveys 
have found that American students are more likely to be stressed, 
depressed, or unable to sleep because of academic pressures than 
are Japanese or Chinese students. The majority of American stu
dents and families tend to believe that mathematical ability is in
nate; either you are born good at math or you aren't. American 
schools tend to track students into different curricula, with the 
more advanced kids in one class and less advanced kids in an
other, whereas in Asian schools everyone takes the same math 
classes. America is supposed to be the land of opportunity, where 
people are free to make their own futures. Yet the idea that indi
viduals are stuck with an inborn set of talents seems to weigh 
heavily on many U.S. schoolchildren. 

Many Asian Americans share an ethnic culture that has 
other distinct features. The children are much more involved in 
musical activities than are the children of other ethnic groups. 
Also, Asian American kids are less likely to be on a sports team, 
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to participate in extracurricular activities, or to have a job out
side school — they are expected to devote their free time to 
schoolwork. 

These findings are suggestive, but another line of analysis 
points toward even deeper forces. Ethnic groups in America de
fine themselves partly by the stories they tell about their strengths 
and weaknesses. Some of these stories center on sports, some 
on business, some on entertainment. Many of the stories Asian 
Americans share, both within their families and among friends, 
involve science and mathematics. Most Asian American children 
don't see themselves growing up to be N B A players, captains of 
industry, or politicians; they tend to believe that U.S. society 
functions in such a way as to cut them off from such options. But 
many believe that if they do well in mathematics and science, 
they can succeed. They can become scientists, engineers, com
puter programmers, physicians. Joining a math club and partici
pating in math competitions is a way of reinforcing these internal 
narratives. Relatively few African American or Hispanic kids 
would say, if asked, that they want to be one of the best high 
school mathematicians in the United States, while thousands of 
Asian American kids would respond that way. 

Then again, maybe there's no need for complex psychologi
cal explanations for the overrepresentation of Asian Americans 
in math competitions. Think about the three Asian Americans 
on the team representing the United States at the Forty-second 
Olympiad. All were born outside the United States. Tiankai came 
from China; Ian was born in Australia, though his parents had 
emigrated from Vietnam; and David had emigrated from Korea. 

People who come to the United States as children cannot 
help but be deeply affected by the experience. They grow up 
hearing about or experiencing the stories of struggle and perse
verance required to succeed in America. Many Asian American 
kids are from relatively privileged families; otherwise they would 
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not have been able to leave their countries. But all new immi
grants to the United States must work hard to succeed, and they 
expect their children to work hard, too. 

With each new generation born in the United States, the im
migrant experience fades. By the third generation most Asian 
American kids are more American than Asian. First-generation 
immigrants from Asia tend to receive grades at school that are 
higher than the average, but over the generations the grades re
gress to the mean. On many measures of health, attitude, and 
well-being, recent immigrants score far higher than families that 
have been in the United States for longer periods. 

The ethnic makeup of U.S. Olympiad teams clearly shows 
this effect. Most Japanese families in the United States, for exam
ple, have been in the country since before World War II. As third-
or fourth-generation Americans, most of the young people no 
longer speak Japanese. They tend to be good students, but they 
do not necessarily excel in mathematics, and they do not gauge 
their self-esteem in those terms. Accordingly, they are not partic
ularly numerous at math competitions, and no U.S. Olympiad 
team has included a member with a Japanese background. 

Most of the kids from China, Vietnam, Korea, and other 
Asian countries, on the other hand, are from families that have 
emigrated more recently. They speak more than one language 
and have experience with multiple cultures, which, as Simonton 
demonstrated, can be a source of creativity. From an early age 
they absorb the lesson that they must work hard to do well in the 
United States and that if they master mathematics and science 
they are more likely to succeed. Given the precarious position of 
immigrant families in U.S. society, the intensity of their drive to 
succeed is hardly surprising. 

V 
Simonton believes that many interacting factors must come to
gether to result in any creative act, whether a symphony, a poem, 
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or a solution to problem four on the International Mathematical 
Olympiad. 

The problem asked the Olympians to prove a particular 
property for the complicated sum 

The sigma means adding a sequence of terms. Thus, another way 
of writing 1 + 2 + 3 is 

Problem four says that a set of integers is represented by the 
terms C\, c2, c3, . . . , c„.i, c„, while a permutation of the first n 
whole numbers is represented by at, a2, tf3, . . . , an.\, a„. The first 
member of one set is multiplied by the first member of the other 
set (so C\ X ai), then the second members of the two sets are mul
tiplied (c2 X a2), and so on through c„ X a„. Then all of these 
products are added together, giving c^i + c2a2 + . .. + c„a„, and 
the result is S(a). Thus, the a in S(a) represents a permutation or 
unique ordering of the whole numbers from 1 to n. Since the first 
n whole numbers can be arranged in n\ different ways, the term a 
can take n\ different forms, as can the sum S(a). 

Many problem solvers would quickly identify the sum as the 
most complicated part of the problem and therefore would try to 
avoid it. David immediately realized that the only way to solve 
the problem was to attack its most difficult part. Essentially, he 
would have to make the problem more complicated before he 
could make it less complicated. 

He decided to take the sum of all the possible values of S(a) 
for the n\ different values of a. Mathematically, that produces a 
monster that looks like this: 

S(a) = X 
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Having denned this sum, David proceeded by contradiction 
(as described in the appendix). He assumed that the statement he 
wanted to prove was false, then showed that such an assumption 
allowed the above "sum of all sums" to be calculated in two con
tradictory ways. The statement therefore had to be true, and the 
problem was solved. 

The solution was masterful, but David had a hunch from the 
start that his approach would work. He knew from previous ex
perience that a sum like this one has to be tamed for the problem 
to be solved. "When you're dealing with a permutation, it's hard 
to describe each individual one, because they're all different," he 
said. "But when you sum over all the permutations, you get rid of 
the variability." In other words, the key to solving the problem 
was not to be intimidated by its complexities. When David re
fused to back down, the variability represented by each permuta
tion yielded to a higher degree of order. 

David could not have solved this problem without a deep 
knowledge of mathematical traditions, which highlights one last 
dimension of creativity. Any new idea, despite its uniqueness, 
builds on a history of thought and experience that extends far 
into the past. Biological evolution works the same way. In nature 
the equivalent of a new idea is a newly born organism. It par
takes of a biological history that extends into the distant past, yet 
if that new organism has the right characteristics, or the right ex
periences, or is just plain lucky, it can change the world. As Ralph 
Waldo Emerson wrote, "The creation of a thousand forests is in 
one acorn." 
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A few days before the Olympiad the members of the U.S. team 
appeared on the television show Good Morning America. All 
six were crammed onto a tiny set in Washington along with 
two adults: coach Titu Andreescu and Tom Leighton, the chief 
scientist of Akamai Technologies, one of the major funders of 
the event. The producers had decided before the interview that 
the show's hosts would ask one team member a math question 
that he hadn't heard before. But there had been some confusion 
over who would answer the question. Most of the team members 
thought it would be Oaz Nir, who, with his casual good looks 
and easygoing nature, had gradually emerged as the spokesman 
for the team. But no one had told Oaz about the plan. He 
thought the question would be posed to Gabriel Carroll, one of 
the team's strongest and quickest mathematicians. 

So when one of the interviewers said, "Here's a question 
that I understand Oaz is going to answer. How can you use a 
nineteen-degree angle to construct a one-degree angle?" the situ
ation had all the makings of a disaster. Here on national tele
vision, with his family and his friends — the whole world — 
watching, as the camera zoomed in on him and the others waited 
expectantly, Oaz could have made a complete fool of himself. 
For the briefest instant a cloud passed across his face. Then he 
said, "Well, you could take the nineteen-degree angle and use it 
ten times to make a one-hundred-ninety-degree angle. Then you 
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could remove one hundred eighty degrees from that angle using a 
straightedge, leaving you with an angle of ten degrees. You could 
double that angle to twenty degrees and then remove nineteen 
degrees, and you'd be left with a one-degree angle." 

The hosts of the show had absolutely no idea what Oaz had 
just said. Turning to Tom Leighton, they asked, "Is that right?" 
Leighton replied, "Yes, it is ." With obvious relief, the hosts re
turned to more comfortable questions. 

Very few people could have responded to that question as 
adroitly as Oaz did. Most people have forgotten how to con
struct angles with a compass and straightedge, so they wouldn't 
know where to begin. And even many professional mathemati
cians would be flustered by the unusual setting, the unblinking 
television cameras, the pressure of the moment. Oaz's composure 
said something important about the math Olympians. They have 
other resources to draw on when their mathematical knowledge 
is not enough. These resources can vary: one Olympian might be 
a good improviser, while another has a steely determination. But 
each has distinct nonmathematical skills, and these skills have a 
big influence on what they do with their lives when they grow up. 

V 
That Oaz would become the kind of person who could act as 
spokesman for the team could never have been predicted just a 
few years earlier. One of his seventh-grade teachers remembers 
him as "very humble and soft-spoken. There wasn't a boastful 
thing about him. Everyone always looked up to Oaz, because he 
was such a talented student. But as far as being a leader, I never 
saw that." 

He was born in New Orleans in 1983, a few years after his 
parents immigrated to the United States from Israel. (His par
ents' background "wrecked my chances for a southern accent," 
he says.) Before he was old enough to begin school, his father's 
career as an engineer took the family to Jackson, the state capital 
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of Mississippi. Jackson, the metropolitan hub of an overwhelm
ingly rural state, has risen from the forests and fields of central 
Mississippi to become a place where people go to shop, eat, and 
visit the science museum. But it retains at least some of the agrar
ian tranquillity and isolation of its surroundings, despite all the 
new Starbucks outlets and Target stores. 

Oaz attended public elementary schools through the fifth 
grade. But his parents, recognizing his talents as a student, real
ized that he needed more of a challenge. In the sixth grade he 
entered St. Andrew's Episcopal School, one of the most aca
demically rigorous private schools in the Old South. Founded in 
1947, its motto is Inveniemus Viam Aut Facietnus — "We will 
find a way, or we will make one." 

The middle and upper schools of St. Andrew's are located in 
a wooded area just north of Jackson, where the "pines in opening 
vistas splashed with fading dogwood," in William Faulkner's de
scription, are rapidly being bulldozed to make way for four-
thousand-square-foot homes. At the entrance to the school is a 
small lake with a wooden cross on one shore. On the other shore 
is a small but obviously sophisticated astronomical observatory. 
At the recent opening of the school's new five-hundred-seat the
ater, the Mississippi Symphony Orchestra played to commemo
rate the event. 

From the beginning, Oaz was an exceptional student. "He 
was a good writer, interested in history," says Pam David, who 
was his sixth-grade teacher that first year and is now head of the 
middle school. "He was a good citizen at this school." But his 
talents shone especially in math. "We had to think of things to 
keep him busy," says Marcia Whatley, who taught Oaz's math 
class in the sixth grade. "He taught me as much as I taught him." 

By the seventh grade, Oaz's teachers were more or less let
ting him study what he wanted in mathematics, so long as he 
kept up with the material being covered in class. But that year 
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St. Andrew's hired a teacher named Barbara Cirilli (her married 
name is now Tompkins) and asked her to organize a Mathcounts 
team. "That was a tremendous opportunity for me," says Tomp
kins, who now teaches at a huge public high school a few miles 
down the road from St. Andrew's. " I came into a school that had 
these tremendously talented kids, and the school encouraged me 
to do as much as I could with them." 

In seventh grade Oaz finished first in Mississippi in Math-
counts, and Barbara Tompkins became the coach of the state 
team. In May the two of them flew to Washington for the na
tional competition. There, for the first time in his life, Oaz met 
other accomplished young mathematicians. It was a deflating 
experience. "There are fifty-seven teams at the national Math-
counts competition, so there are two hundred twenty-eight peo
ple," Oaz recalls, "and I was exactly at the halfway point; I was 
one hundred fourteenth. So that's fairly mediocre." 

He returned to St. Andrew's determined to improve. Tomp
kins went through her shelves and pulled out problem-solving 
books that she gave to Oaz. Among them was The Art of Prob
lem Solving, the same book Melanie Wood had read with such 
enthusiasm after her success in Mathcounts a few years earlier. 
Slowly and carefully, sometimes with help from his father or 
Tompkins, but more often on his own, Oaz worked his way 
through the books, solving as many problems as he could. The 
next year, during eighth grade, he was eighteenth at the national 
Mathcounts competition. "That's not great, but it's a lot better," 
he says. 

As with the other Olympians, one of Oaz's distinguishing 
characteristics as a problem solver was his perseverance. Tomp
kins lent him more books, and Oaz began reading the high 
school and college mathematics texts in the St. Andrew's library. 
"It was phenomenal to see how much he improved," says Tomp
kins. "He excelled at whatever he set his mind to do. I just pro-
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vided him with the books and with the opportunity to compete. 
He did all the rest on his own." According to Oaz, " I didn't really 
get good at math until I started working really hard at it." 

As a ninth-grader at St. Andrew's, he did extremely well on 
the American High School Mathematics Examination. He was 
invited to take the U S A M O , in which he received an honorable 
mention, meaning that he was one of the top two dozen in the na
tion. As a result he was invited to attend the summer training 
camp in Lincoln. " I was very excited about going," he says. 
"Back then the people at the camp were like celebrities to me." 

That summer was fateful for another reason. Because of his 
father's job, the family moved again — to the San Francisco Bay 
Area. His parents carefully scouted the schools in the towns 
where they could live. In the end they decided on Cupertino — a 
town of about fifty thousand people midway between Palo Alto 
and San Jose — where Oaz and his older brother could attend 
Monta Vista High School. 

The school, which occupies a ramshackle collection of low-
rise wood-frame buildings, nestles up against the soft burr of the 
coastal range. It faces east, toward the rising sun and the milky 
haze that often overlies San Francisco Bay. Cupertino is in the 
heart of Silicon Valley, and the road to the school passes build
ings filled with software and biotechnology companies: Lumi
nous Networks, Celerity Digital Broadband, Endotex, Lepton 
Networks, In-Time Software. Many hard-driving Silicon Valley 
executives live in Cupertino so their children can attend Monta 
Vista. It was a California Distinguished School in 1996 and a na
tional Blue Ribbon school in 1998, and it is generally considered 
one of the top ten public schools in California. Newspapers in 
China and Japan routinely tout the school as a good place for im
migrants to send their children. 

Monta Vista's reputation and the intensity of many Cuper
tino parents have made the school an academic hothouse. "Our 
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biggest problem here is students who are stressed out because 
they're not doing well academically," says one of the school's 
teachers. Still, Monta Vista is a public high school, so it includes 
all types of kids. "Remember high school?" writes David Brooks 
in the Atlantic Monthly. "There were nerds, jocks, punks, bik
ers, techies, druggies, God Squadders, drama geeks, poets, and 
Dungeon & Dragons weirdoes. All these cliques were part of 
the same school: they had different sensibilities; sometimes they 
knew very little about the people in the other cliques; but the 
jocks knew there would always be nerds, and the nerds knew 
there would always be jocks. That's just the way life is ." 

The range of cliques may be less broad at Monta Vista than 
elsewhere, but Oaz found that the school had an energy and di
versity that he hadn't known at St. Andrew's — and he liked it. 
"Between the time when Oaz arrived here as a sophomore and 
when he graduated, he became a completely different person," 
says Bob van Hoy, a computer science teacher who befriended 
Oaz during that first semester. At first Oaz kept to himself a lot. 
He has always thought of himself as shy, despite his appeal
ing smile, friendly demeanor, and obvious competence. But at 
Monta Vista he began to try new things, and he succeeded in 
them just as he had in math. Back in Jackson he had been on a 
swim team. Now he joined the school's water polo team, con
verting those endless hours of staring at the bottom of the pool 
into a boisterous and competitive team activity. He got involved 
in the debate club, an activity that teaches many high school 
students to appear confident even when they're not. He began 
to write more, first poetry, then some short stories. He has al
ways been good-looking, with dark Mediterranean coloring and 
a nimble, flowing quality to his movements. Now he had his ear 
pierced and began dressing more like a Californian. "By the end 
of his junior year he was well known on campus and doing many 
different things," says van Hoy. " I don't know if he planned that 
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or if it just happened, but every new thing he tried he enjoyed, 
and he ended up thriving in them al l . " 

Oaz also became more sensitive to some of the stereotypes 
that surround mathematically talented students. At an academ
ically high-powered school like Monta Vista, the traditional 
stereotype of young mathematicians — as socially inept, poorly 
dressed geeks with pocket protectors — does not have much res
onance. The students have all heard stories of "quant jock" 
mathematicians who went to work for software and financial 
companies and became rich. But kids who are good at math still 
attract a measure of suspicion. Maybe in a place like Silicon Val
ley they're seen as having access to knowledge that can confer 
great power. Or maybe the old stereotypes have just been up
dated. The movie Good Will Hunting came out while Oaz was in 
high school. The young mathematician in the movie (played by 
Matt Damon, an obvious contradiction to the canard that all 
mathematicians are homely) is clearly very talented, though also 
troubled by a childhood of abuse and neglect. His mentor, a so
phisticated and renowned mathematician now bereft of inspira
tion, takes an interest in the young man, mostly to further his 
own career. The message of the movie seems to be that people do 
mathematics to avoid the inevitable complications of life. Will 
forgoes a mathematics job to follow his girlfriend to California. 
And in the most obvious departure from reality, he's hardly ever 
seen doing math, despite the tremendous effort needed for any
one to become a proficient mathematician. 

Oaz learned to disguise his interest in math when it served 
his purposes. "Math isn't the coolest thing in the world to do," 
he says. " I don't really go around telling people about it. It's not 
something that's always that socially acceptable. I think a lot of 
people who are good at math don't pursue it for that reason, and 
I think more girls than guys drop it for that reason." 

But he continued to do math, and to do it extremely well. 
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After his junior year at Monta Vista, he qualified for the Olym
piad team that traveled to Seoul. There he was awarded a gold 
medal, meaning that he finished in the top twelfth of the competi
tors. From the middle of the pack as a seventh-grader, Oaz had 
risen, four years later, to the top of the problem-solving world. 

V 
Many social scientists devote sizable portions of their careers to 
tracking the lives of precocious children to see what smart kids 
do when they grow up. Yet when they have summarized their re
sults, many have looked back on the years of interviews, ques
tionnaires, and analysis with a twinge of disappointment. It's not 
that academically or artistically gifted children don't do well as 
adults; most do. But rarely do they meet the extravagant expecta
tions of those who study them and who inevitably come to ad
mire them. 

The most famous longitudinal study of academically ad
vanced children was begun in 1921 by Lewis Terman, a profes
sor of psychology at Stanford University. Earlier in his career 
Terman had been the leading developer of the IQ test in the 
United States. In his study of what he called "child geniuses," 
Terman used nominations by teachers and parents, followed by 
IQ testing, to identify about 1,450 third- to seventh-grade boys 
and girls in California whom he deemed to have exceptional 
promise. By that he meant that their IQ scores were higher than 
about 135. 

From the very beginning, the project had what are now rec
ognized as major flaws. Because of his sampling technique, the 
"Termites," as they came to be known, were drawn from a rela
tively narrow section of society. Most were white, from the mid
dle or upper class, and attending good schools. Terman strongly 
believed that intelligence resulted almost entirely from a person's 
genetic endowment (the first report of his project was entitled 
Genetic Studies of Genius). He thought that the bright children 
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he was studying would become the great artists, writers, and 
leaders of the future. "Moderate ability can follow, or imitate, 
but genius must show the way," he wrote. He was a strong pro
ponent of the eugenic nonsense fashionable in the first part of the 
twentieth century. He thought that intelligence testing would re
sult " in curtailing the reproduction of feeblemindedness and in 
the elimination of an enormous amount of crime, pauperism, 
and industrial inefficiency." From our perspective the dangers in
herent in his ideas seem obvious. 

Terman administered an enormous battery of tests to his 
young subjects, including IQ tests, physical exams, and personal
ity assessments. He interviewed their parents, teachers, and phy
sicians. He collected data on their ancestors, the books they read, 
their nervous tics, the foods they ate, the hours they slept, and the 
cleanliness of their homes. He even pried into the most personal 
details of their upbringing and sexual lives as adults. For the 
most part the Termites endured this constant poking and prod
ding with stoic good humor, convinced that they were contribut
ing to a worthy cause. 

Terman expected his young subjects to become the leaders 
of their generation, as exceptional in adulthood as they were as 
children. In this respect, said Terman's successor at Stanford, Al 
bert Hastorf, "It's my guess that Terman was a little bit disap
pointed." Only one of the 1,500 Termites became a well-known 
scientist — the physiologist Ancel Keys, who developed the por
table meals now called K rations. In fact, two children who lived 
in California and would later go on to win Nobel Prizes — Wil
liam Shockley, a coinventor of the transistor, and the physicist 
Luis Alvarez — were not included in the study because their IQ 
scores were too low. Probably the most influential of the Ter
mites was Jess Oppenheimer, who became a humor writer and 
later created / Love Lucy and other well-known T V shows. Yet 
his success could not have been predicted. One of Terman's assis-
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tants wrote after an interview with him as a child, " I could detect 
no signs of a sense of humor." 

Some of the Termites never seemed comfortable with the 
"genius" label (Terman himself gradually abandoned the term in 
favor of "gifted"). A few committed suicide, though no more 
than would be expected in any large sample of Americans, and 
several others developed severe psychological problems. Some 
floundered professionally, never quite deciding what they 
wanted to do. 

But by far the majority of the Termites grew up to be well-
adjusted, financially comfortable, conventionally successful pro
fessionals. They were engineers, doctors, lawyers, businessmen, 
and professors. Following the standards of the time, most of the 
women did not have careers, but they were busy and productive 
in their homes and communities. 

Terman thought that the most intelligent of his subjects 
would become the most prominent, but that turned out not to be 
the case. As part of his study, the twenty-six Termites with IQ 
scores above 180 were compared with twenty-six random Ter
mites with scores below that point. The high-IQ group scored 
no better on various measures of success than did the lower-IQ 
group. 

But between those identified as more successful and less suc
cessful, differences did tend to emerge. The Termites who were 
most successful as adults tended to have high levels of energy, cu
riosity, and interest. They were more persistent and hard-work
ing as children and had a broader range of interests. More of 
them had graduate degrees, and they earned their degrees at 
younger ages. They were more likely to say that they enjoyed 
their jobs. 

That many of the Termites could not meet Terman's ex
pectations is not surprising, say psychologists who have since 
conducted similar studies. As Ellen Winner writes in Gifted Chil-
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dren, "Every prodigy eventually becomes an ex-prodigy." As ac
ademically advanced children grow up, they must make several 
critical transitions if they are to be comparably outstanding as 
adults. They have to convert the largely technical skills they have 
learned into a broader mastery of a field, so that they can begin 
to make original contributions to it. They must learn to rely on 
their own initiative and confidence rather than on the praise 
of parents and other adults. Many child prodigies undergo psy
chological crises during late adolescence when they realize that 
their skills, which were praised so extravagantly at younger ages, 
are no longer sufficient to excel. Some make the transition to new 
and deeper forms of accomplishment; others turn away from 
their early domain of expertise. 

In mathematics, for example, skilled adolescents must move 
from being problem solvers to problem finders if they want to be 
professional mathematicians. A teenager can excel in school and 
in competitions like the Olympiad by becoming adept at solving 
problems for which an answer is already known to exist. But to 
become a research mathematician, a person has to be able to 
identify and make progress on interesting problems that may not 
have solutions. 

Precocious children no longer have the field to themselves as 
they grow older, since many people who become prominent as 
adults did not exhibit particular signs of promise as children. In a 
study of 317 eminent people who lived during the twentieth cen
tury, the psychologist Victor Goertzel found that two-thirds were 
not described even as precocious when they were young, much 
less as prodigies. In an examination of the lives of Albert Ein
stein, T. S. Eliot, Sigmund Freud, Mohandas Gandhi, Martha 
Graham, Pablo Picasso, and Igor Stravinsky, Howard Gardner 
found that only Picasso could be considered a prodigy. Many 
people who go on to attain eminence do not discover the field in 
which they will excel until college or later. Others coast along in 
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their chosen field until something makes them catch fire. And of 
course luck is an important factor; there's no substitute for being 
in the right place at the right time. 

The word "success" is itself a loaded term. Many eminent 
people, though of course not all, must make difficult trade-offs in 
the pursuit of their goals, or trade-offs may be imposed on them. 
Some sacrifice close relationships with a spouse, children, and 
friends. Many prominent creators have had a stressful child
hood; a surprising number, for example, experienced the death of 
a parent while they were young. The occasional association of 
mental illness and creativity is another indication that some lives 
of great accomplishment are far from tranquil. 

Besides, to judge the Termites as unsuccessful is to adopt 
Terman's own skewed perspective. By any conventional measure 
of success, Terman's subjects did extremely well. Most had good 
jobs, strong families, broad interests, and comfortable lives. That 
few became fame-obsessed painters, poets, or musicians is more 
a reflection of their overall good sense than any kind of lost 
promise. Those who lived into their eighties and nineties re
mained energetic, curious, and interested in the world around 
them. 

V 
The 118 males — plus Melanie Wood — who have been on U.S. 
Olympiad teams constitute a much smaller sample than the 
1,500 people in Terman's study. The Termites were Californians 
chosen largely on the basis of their IQ scores. The Olympians — 
from all over the United States — ran a much more demanding 
gauntlet. Each had to demonstrate the insight, perseverance, tal
ent, and creativity needed to be numbered among the best prob
lem solvers in the world. They rightly consider themselves mem
bers of a small and very select group. 

A logical temptation is to think that all the Olympians 
should be as exceptional in adulthood as they were as high 



b r e a d t h 161 

school mathematicians. As the Termites' experiences demon
strate, that expectation is obviously unrealistic. Many Olym
pians have fairly typical jobs in academia, business, or govern
ment. But a closer inspection reveals many ways in which they 
have begun to distinguish themselves. 

The best example is Eric Lander. After competing with the 
first U.S. Olympiad team in 1974, he studied mathematics in col
lege, earning an undergraduate degree from Princeton and a Ph.D. 
from Oxford in 1981. He became interested in biology while 
teaching at Harvard Business School in the 1980s, partly through 
conversations with a brother who was a neuroscientist. He taught 
himself molecular biology, became a faculty member at MIT's 
Whitehead Institute, and in 1990 founded the institute's Center 
for Genome Research, which quickly became a leader in the ef
fort to sequence the human genome. "Eric Lander came through 
in the final stretch," writes Ingrid Wickelgren in her book The 
Gene Masters, "applying his exceptional talents for automating 
biology to sequencing and churning out the most human draft se
quence of any laboratory in the public effort." The politics of the 
Nobel Prize are complicated; recipients have to be honored while 
they are alive, so a backlog of aging notables always exists, and 
each award can go to no more than three individuals, which 
means that team projects are sometimes slighted. But Lander, a 
man who has already made contributions to science that will be 
remembered for centuries, is certainly on the Nobel short list. 

Other Olympians have been gaining renown as they have 
entered their prime professional years. Peter Shor, a member 
of the 1977 team that finished first in Yugoslavia and now a 
mathematician at A T & T Labs in New Jersey, has been a leader 
in the development of quantum computing — an effort to use 
the quantum properties of atoms to produce computers that are 
orders of magnitude more powerful than today's. Several other 
prominent young professional mathematicians in the United 
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States were on Olympiad teams. Two Olympians founded soft
ware companies, and one remains the chief engineer of his com
pany. Two are Talmudic scholars. One performed with an en
semble at Carnegie Hall . 

Much of this information comes from James Campbell, who 
leads a research project at St. John's University in New York City 
that is tracking the careers of the Olympians. For twenty-five 
years Campbell ran the Metropolitan New York division of the 
Junior Science and Humanities Symposium, a regional and na
tional competition for high school students who have done origi
nal research in science, engineering, and mathematics. He de
cided to try to find out whether competitions made a difference 
in students' lives. 

Like some of the Termites, a few Olympians had problems 
in college, and others searched long and hard for a challenge that 
would match their earlier triumphs. But those are the exceptions, 
Campbell says. Most former team members went to prestigious 
colleges, with Harvard and Princeton the two top choices. More 
than half have earned doctoral degrees (the comparable figure 
for Terman's study was about a quarter of the eight hundred 
males). Those old enough to have now finished college and grad
uate school generally have good, and in many cases high-paying, 
jobs. 

Campbell's most remarkable finding is how wide-ranging 
the Olympians' career choices have been. Only about a quarter 
of them have become research mathematicians at universities. 
Some of the jobs held by others are still mathematically intense 
— such as those held by the several who work on top-secret na
tional security projects. But other Olympians don't do much 
math anymore. Some have become lawyers, engineers, and doc
tors. Others have applied their talents to more lucrative ends. 

Take Eric Wepsic, who now works for the D. E. Shaw 
group, a securities trading and investment firm in midtown Man-
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hattan. Wepsic was on the 1987 and 1988 teams that competed 
in Cuba and Australia. After receiving his baccalaureate from 
Harvard, he began graduate school in mathematics there, but he 
was "unhappy with research," he says. " I had never decided on 
grad school. At the time I saw it more or less as my only option, 
which is a really stupid way to choose a career." 

Wanting to do something faster-paced and more engaging, 
Wepsic got in touch with a friend who had gone to work for 
Shaw, applied for a job, and was quickly hired. At first he did 
various kinds of research connected with equities. Now he man
ages most of the automated trading groups at Shaw. He says that 
he still uses a lot of math in his work, "like probability and statis
tics, and also a lot of mathematical reasoning, which we apply to 
our trading algorithms." And even though he doesn't use much 
of the math he learned after his first couple of years of college, 
"the mental training that I got in math has been very helpful." 

Wepsic encourages young mathematicians to "try to vary 
what you do (at least in small ways) so that you continue to 
learn." Most of the Olympians don't need much encouraging to 
be venturesome. They are curious about almost everything — 
music, games, sports, literature. A surprising number have writ
ten short stories or poetry, and one star Olympian during the 
1980s, Princeton math professor Jordan Ellenberg, has written a 
delightful and widely acclaimed novel, The Grasshopper King. 
And when they try something new, they typically learn to do 
it well. 

Being good at so many things has only one major drawback, 
say the Olympians and others who know them. When mathema
ticians already susceptible to arrogance decide they can do any
thing they set their minds to, their self-regard can become a bit 
overwhelming. The questionnaires Campbell sends to the Olym
pians inevitably contain a few typos, and just as inevitably a few 
are returned with the typos corrected. "It doesn't bother me, be-
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cause I'm used to it," Campbell says. "But I can imagine how a 
boss would feel." 

V 
Oaz drew on a particular kind of breadth in solving problem five 
— an ability to pursue the obvious relentlessly. Like problem 
one, it was a geometry problem. And also like problem one, it 
sounded more complicated than it really was. 

Let ABC be a triangle with angle BAC = 60 degrees. Let AP bi
sect angle BAC and let BQ bisect angle ABC, with P on BC and 
Q on AC. If AB + BP = AQ + QB, what are the angles of the 
triangle? 

The first thing Oaz had to do was convert this complicated-
sounding problem into a diagram. So he drew the following 
sketch: 

The problem states that the angle B A C is 60 degrees and 
that line AP bisects angle B A C . Oaz therefore knew that each of 
the two halves of the angle equaled 30 degrees, which he indi
cated on his diagram. Similarly, the problem says that line BQ bi
sects angle A B C . But Oaz did not know what angle A B C was, so 
he labeled each half of the angle with the Greek letter beta (/?). If 
he could figure out what angle beta was, then he would know 
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that angle A B C was twice that, and that would give him the solu
tion to the problem. 

This problem has several extremely clever solutions (one of 
which is described in the appendix). The trouble with such solu
tions is that you can spend a lot of time looking for them, and 
if your cleverness fails you, a lot of time can be wasted. Oaz 
didn't want to take a chance with problem five. He decided to 
dumb-ass it. 

Dumb-assing, in Olympiad parlance, is what you're doing 
when you're not being clever. You take the most obvious ap
proaches and try to work through a problem by brute force. 
"To some extent, dumb-assing is a state of mind," says former 
Olympian Alex Saltman. "Dumb-assing gives you something to 
do that could give you inspiration, or maybe even provide you 
with a complete proof. What you try to do is minimize the num
ber of ugly steps in a dumb-ass proof so they're not all ugly." 

Oaz began by defining the lengths of various line segments, 
like AB and BP, in terms of the sines and cosines of 30 degrees 
and angle beta. He then converted the statement AB + BP = A Q 
+ Q B into its trigonometric equivalent and began manipulating 
it. At times the equations got pretty hairy. A key step in his solu
tion was the equation sin [60 - (fill)] = 2 sin (30 + lfi) sin fill). 
Eventually Oaz ended up with two equivalent expressions that 
could be plotted as lines on a plane. The two lines intersected at a 
point indicating that beta had to be 40 degrees. Therefore, angle 
A B C in Oaz's diagram had to be 80 degrees. Since the angles of a 
triangle always add up to 180 degrees, and the problem says that 
angle B A C is 60 degrees, angle A C B had to equal 40 degrees. 

Oaz's solution for problem five was far from elegant, but it 
worked; his solution received a perfect score. It was part of a su
perb second day for Oaz, who received perfect scores on prob
lems four and five and partial credit on problem six. Oaz's re
sourcefulness as a problem solver had come through again. 

Yet this Olympiad had a wistful feeling for Oaz. The goal he 
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had sought for so long — to be numbered among the elite of high 
school mathematicians — had now been achieved. " I like math, 
for fun and for competitions," he said. "But I don't want to do it 
forever. If you do research and become a professor, the math that 
you do can be really abstract. I don't really want to do that. I 
might do something that's related to math, like some kind of sci
ence. But I might also do something completely unrelated." 



T . a sense of wonder 

The pressure on the competitors seemed greatest during the eve
nings right before the Olympiad, so the organizers decided to fill 
one of the evenings simply with a movie. The Olympians specu
lated about what the movie might be — a James Bond flick, 
maybe, to take their minds off mathematics? But then word got 
around: "It's that Nova show where Andrew Wiles cries." Many 
of the competitors had already seen it. Yet almost all of them 
were quietly watching as the lights dimmed in the viewing room 
of the student union building. 

The show opens with the moment the Olympians remem
bered, which occurred during an interview with Wiles in the attic 
of his home in Princeton. There, after years of work, he finally 
had proved Fermat's last theorem. "At the beginning of Septem
ber," says Wiles, " I was sitting here at this desk, when suddenly, 
totally unexpectedly, I had this incredible revelation. It was the 
most — the most important moment of my working life. Noth
ing I ever do again will — I'm sorry." 

Wiles's proof has been called one of the greatest triumphs of 
twentieth-century mathematics, yet it began with a set of obser
vations no different from those in an Olympiad problem. Ac
cording to the Pythagorean theorem, if the sides of a right trian
gle are labeled x, y, and z, with z the longest side, then the lengths 
are related by the formula x2 + y1 = z1. For example, a right tri
angle with sides of lengths 3, 4, and 5 satisfies the Pythagorean 

^67 
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theorem because 3 2 + 4 2 = 5 2 , or 9 + 16 = 25. The Greeks knew 
that an infinite number of different triangles with whole-number 
sides satisfy the equation. Thus, an infinite number of whole-
number triads (like 3, 4, and 5; 7, 24, and 25; 8, 15, and 17; and 
so on) must exist that solve Pythagoras's equation. 

Sometime in the 1630s the French mathematician Pierre de 
Fermat — the same Fermat who occasionally challenged his col
leagues with difficult problems — was reading a Latin transla
tion of a book called Arithmetica by the Greek mathematician 
Diophantus of Alexandria. One portion of the book was devoted 
to observations about the Pythagorean theorem, and Fermat, as 
he read, began wondering about possible extensions of the theo
rem. For example, could he find a trio of whole numbers that 
solved x3 + y 3 = z 3? More generally, could he find trios of whole 
numbers that would satisfy x" + y" = z", in which n is any whole 
number greater than 2? 

In the margin of his copy of the Arithmetica, Fermat wrote a 
note that has haunted mathematicians ever since. He claimed 
that no whole-number solutions exist for x" + y" = z" if n is a 
whole number greater than 2. In other words, for n = 3 and for 
all other values up to infinity, three whole numbers would never 
be found that satisfy the equation. Then he wrote, " I have a truly 
marvelous demonstration of this proposition which this margin 
is too narrow to contain." 

Fermat's note came to light only after his death many years 
later, at which point mathematicians began looking for his "dem
onstration." But exhaustive searches of his mathematical papers, 
his library, and even his home did not turn it up. Meanwhile, the 
world's best mathematicians sought to prove his conjecture — 
without success. Over time the many other mathematical propo
sitions that Fermat had claimed without proof were solved. But 
his claim that x" + y" = z" has no whole-number solutions when 
n is greater than 2 resisted their best efforts. The statement there-



a s e n s e o f w o n d e r 169 

fore became known as Fermat's last theorem — even though it 
hadn't been proved and was thus a conjecture rather than a theo
rem, and even though Fermat was a relatively young man when 
he proposed it. 

Andrew Wiles became interested in Fermat's last theorem 
when he was ten years old. At a library in Cambridge, England, 
near his childhood home, he picked up a book called The Last 
Problem by Eric Temple Bell, which told the story of Fermat's 
conjecture and explained how it had defied mathematicians for 
more than three centuries. "It looked so simple, and yet all the 
great mathematicians in history couldn't solve it," Wiles told Si
mon Singh, the producer of the show the Olympians watched 
that evening. "Here was a problem that I, a ten-year-old, could 
understand, and I knew from that moment that I would never let 
it go. I had to solve it." 

Wiles worked on the problem for several years when he was 
young but progressed no further than any other mathematician 
had. As a teenager he became so interested in mathematics that 
he decided to make it his career, and he stopped working on 
Fermat's last theorem as he came to appreciate its difficulties. But 
the problem was always in the back of his mind. After receiving 
his doctorate in mathematics from Clare College, Cambridge, 
in 1980, he moved across the Atlantic to Princeton University, 
where he became a rising star in the mathematical field known as 
number theory. Then, in the mid-1980s, new developments in 
mathematics revealed a possible new approach to Fermat's last 
theorem. Setting aside his other interests, Wiles devoted seven 
straight years of his life to his childhood obsession, working 
largely in seclusion in the attic of his Princeton home. Finally, on 
the morning of September 19,1994, he realized that he had done 
it — he had solved a problem that had stymied mathematicians 
for hundreds of years. 

Wiles's inability to describe his breakthrough without chok-
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ing up may seem slightly absurd. How could someone get so 
emotional about a math problem? Yet the Olympians watched 
him relive that moment with quiet respect. Each of them seemed 
to know exactly how he felt. 

V 
The sixth and last problem on the Forty-second Olympiad — 
by tradition the hardest of all — looked deceptively straightfor
ward to the competitors. 

Let a > b > c > d be positive integers and suppose that ac + 
bd = (b + d + a - c)(b + d - a + c). Prove that ab + cd is not 
prime. 

The problem comes from the branch of mathematics known 
as number theory, which investigates the properties and relation
ships of whole numbers. It asks you to prove that if you have four 
whole numbers of decreasing values that meet a particular condi
tion, then the first two numbers multiplied together plus the sec
ond two numbers multiplied together cannot be a prime number. 
In other words, ab + cd has to be evenly divisible by at least one 
whole number other than 1 and itself. For example, 21 is not 
prime, because it is the product of 3 and 7. 

Many hours of trial and effort can produce four numbers 
that satisfy the condition laid out in problem six. For example, 
the numbers 21, 18, 14, and 1 do the job, because (21 X 14) + 
(18 X 1) = (18 + 1 + 21 - 14) X (18 + 1 - 21 + 14). And sure 
enough, the number (21 x 18) + (14 x 1) = 392 is not prime, 
because 392 = 2 x 2 x 2 x 7 x 7 . But the Olympians had to 
do much more than find a single example that satisfies the prob
lem. They had to prove, using the methods of number theory, 
that the statement holds for any four whole numbers, from zero 
to infinity. 

Number theory sometimes has been called the "queen of 
mathematics," though the phrase is not necessarily complimen-
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tary. Historically, number theory was seen as elegant but some
what irrelevant to the real work of mathematics, a pleasant di
version that had to be put aside when the heavy lifting of solving 
a scientific problem began. The number theorist G . H . Hardy 
(who also called mathematics a "young man's game") wrote in 
his 1940 autobiography A Mathematician's Apology, " I have 
never done anything 'useful.' No discovery of mine has made, or 
is likely to make, directly or indirectly, for good or ill, the least 
difference to the amenity of the world." 

As with his generalizations about age, Hardy sold number 
theory short. The codes that keep nuclear weapons from being 
launched without authorization are derived from number theory, 
as are a host of other encryption techniques. Applications of 
number theory turn up in physics (calculating atomic energy lev
els), acoustics (designing sound diffusers), and information the
ory (devising error-correcting codes). Hardy himself once wrote 
a letter to Science magazine describing the transmission of ge
netic traits in populations, and the resulting formulation — 
though technically not a result of number theory — is known to
day as the Hardy-Weinberg equilibrium. 

But perhaps the greatest influence of number theory has 
been its appeal to the imagination. Countless children have spent 
hours and days and years wondering why numbers work the way 
they do. Why is it that every even number greater than two that 
has ever been tested is the sum of two prime numbers? (The 
proposition that all even numbers meet this condition, known as 
Goldbach's conjecture, has never been proved.) What determines 
the spacing of prime numbers along the number line? (The distri
bution of primes is the subject of another famous unsolved con
jecture called the Riemann hypothesis.) 

Number theory was one of the subjects — along with logic 
and algebra — that captured the childhood attention of Gabriel 
Carroll, the sixth member of the U.S. Olympiad team. When 
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he was very young he began reading simple math books and 
working his way through logic puzzles. " I definitely got an early 
start," he says. " I remember I was doing arithmetic and algebra 
when I was six." Soon he was reading books about recreational 
mathematics, especially those by Martin Gardner, and working 
on more advanced problems. " I would randomly come up with 
theorems and prove them on my own — easy stuff. I remember 
the first thing I proved that I could call a theorem — I was about 
ten years old at the time — was that the perpendicular bisectors 
of the sides of a triangle come together at a point. So I went home 
and told that to my mom, and she said, 'Yeah, that's a well-
known result.' I was really disappointed." 

Gabriel was the only one of the six U.S. team members who 
had not participated in Mathcounts. He grew up in Oakland and 
attended the public schools in the city. When he was in the fifth 
grade he took part in a local mathematics competition that was 
so unsatisfying that he lost his enthusiasm for contests. "When I 
was offered the opportunity to compete in Mathcounts in the 
seventh grade," he says, " I was given the impression that it was 
another competition like the previous one, so I decided not to do 
it." But he continued to read math books on his own. In the 
eighth grade he took the American High School Mathematics 
Exam and did so well that he was asked to take the American 
Invitational Mathematics Exam and the U.S. American Mathe
matical Olympiad — a remarkable achievement for an eighth-
grader. His success rekindled his interest in competitions, and he 
began to work harder on problem solving. 

The next year he went to Oakland Technical High School, a 
large public school that is divided into quasi-vocational pro
grams called academies; Gabriel was in the engineering academy, 
which he describes as a combination of drafting and physics. Ga
briel took calculus in his freshman year at the recommendation 
of a teacher who noticed his abilities. At the end of that year he 
qualified not only for the Olympiad summer training program 
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but also for the Olympiad team. " I worked with him first at the 
summer camp," says the Berkeley mathematician Zvezdelina 
Stankova, who is an assistant coach of the Olympiad team. 
"Gabe was not really known before that, at least not nationally, 
and he had not been to the summer camp before. So his qualifica
tion for the team was a big surprise. We weren't sure what to ex
pect from him, and whether he would be up to the other mem
bers of the team. But Gabe joined the lectures as if he had been 
there for years. He shone from the very beginning. Often he not 
only solved a particular problem but also offered alternative 
ways to solve the problem or even generalizations of the prob
lem. I was very impressed by him." 

At the Olympiad in Taiwan that year, Gabriel earned a gold 
medal, as did his teammate Reid Barton, also a freshman. In his 
next year at Oakland Technical High, Gabriel began taking math 
classes at Berkeley, a fifteen-minute bus ride from his school. He 
also started attending the math circles that Stankova and other 
mathematicians in the Bay Area were organizing. "He learned a 
lot there, and also met a lot of other people interested in mathe
matics," says Stankova. "The circles are not just about problem 
solving. Some lectures are all mathematical theory with no direct 
applications to Olympiad problems, so they enlarge your under
standing of what is going on." 

If anyone on the Olympiad team looked like a Californian, 
it was Gabriel, with his dirty-blond hair, wire-rim glasses, and a 
bit of a stubble. He has a loose-limbed, lanky stance, as if his 
body were suspended from his shoulders. He is a master of mir
ror writing. If you say a sentence, he can immediately write it 
backward and then say it backward. "It's just something I picked 
up along the way," he says. 

Sometimes Gabriel has a distracted air, as if he isn't paying 
much attention to what's going on around him. But that's a ruse. 
O n his personal Web site, built around an elaborate persona 
called the Gastropod, he has compiled hundreds of snippets of 
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conversation gathered over the years. Some are Yogi Berraisms: 
"Anyone who remembers this is not ever gonna forget it." "Con
versation is so boring when everyone is introverted" (attributed 
to Oaz Nir). Others are mathematical: "This is a really good 
proof. It's been around for 2300 years, but it still works." " I set it 
to circumcise the hexagon around this circle." And others are 
odd amalgams of mathematics and life: " I will give you two an
swers to that, one smart and one wise." "That annoying e~" [a 
term that gets smaller and smaller with time] is because you don't 
live forever. Because eventually you die." 

V 
Gabriel's answer to problem six demonstrated his power as a 
mathematician. "Gabe's solution was overkill," says Stankova, 
"but he solved the problem the way a mathematician would 
solve it." In his solution he used a mathematical idea called a ring 
— a set of mathematical objects, any two of which can be added 
or multiplied to yield another member of the set. For example, 
the whole numbers constitute a ring, because adding or multiply
ing two whole numbers produces another whole number. But 
rings can be constructed using other kinds of mathematical ob
jects, and Gabriel, in solving problem six, used one of the most 
exotic categories of elementary mathematical objects to build his 
ring — imaginary numbers. 

Many people give up on math just about the time they learn 
about imaginary numbers. That's unfortunate, because imagi
nary numbers are fascinating and not that complicated. They in
volve square roots, which for positive numbers are straightfor
ward: the square root of 4 is 2, because 2 x 2 = 4. But what is the 
square root of —4? Multiplying a negative number by a negative 
number always gives a positive number. Similarly, multiplying a 
positive number by a positive number always produces a positive 
number. So what number can be multiplied by itself to yield a 
negative number? 
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As it turns out, none of the counting numbers, those we 
learn about in grade school, work. But mathematicians have 
learned over the centuries that the square root of a negative num
ber is just as legitimate a number as any counting number. The 
difference is that we cannot interpret its physical reality in the 
same way as for a number like 2.5, which can be seen as a point 
on the number line. That's why mathematicians began calling the 
square roots of negative numbers imaginary numbers, in con
trast to the "real" numbers on a number line. And they gradually 
adopted a special symbol, i, for the simplest imaginary number, 
the square root of —1. 

In his solution to problem six, Gabriel used a number 
known as omega, which is defined in terms of i, to factor the 
equation (omega is described in more detail in the appendix). 
Then he was able to show that ab + cd is the product of two 
whole numbers, which he called p and r. To prove that ab + cd is 
not prime, as the problem required, he had to show that neither p 
nor r could be 1. He assumed the opposite and solved the prob
lem by showing that the assumption led to a contradiction. 

The power of Gabriel's proof derives in large measure from 
the capabilities mathematicians gained when they learned to use 
imaginary numbers in their work. Many other examples of these 
capabilities can be cited. Imaginary numbers are used to analyze 
electrical currents, the motions of springs, the flow of fluids, and 
countless equations involving continuous change. They come up 
in signal processing, number theory, and quantum mechanics. 

Imaginary numbers also figure in one of the most famous 
equations in all of mathematics: 

e"1' = - 1 

In its six symbols this equation unexpectedly unites four ar
eas of mathematics that seem almost completely distinct: arith
metic, analysis (a branch of mathematics based on calculus), 



176 a t t r i b u t e s 

geometry, and algebra. The number —1 is familiar to everyone 
from the arithmetic learned in school. The number e, which 
comes up often in calculus, equals 2.71828 . . . , with the ellipses 
indicating that the string of digits giving its exact value extends 
to infinity. The more familiar number n — 3.14159 . . . — is the 
ratio of a circle's circumference to its diameter. And / is the square 
root of - 1 . Thus if e is raised to the ni power, the result is — 1. 
The equation was first derived by the great eighteenth-century 
Swiss mathematician Leonhard Euler, and it has fascinated 
mathematicians and scientists ever since (the physicist Richard 
Feynman once called it "the most remarkable formula in mathe
matics"). As the nineteenth-century Harvard mathematician 
Benjamin Peirce said: "It is absolutely paradoxical; we cannot 
understand it, and we don't know what it means. But we have 
proved it, and therefore we know it must be truth." Some mathe
maticians have considered this equation so transcendent that 
they have had it engraved on their tombstones. 

V 
Unexpected connections among different branches of mathemat
ics have been a prominent theme in the history of the discipline. 
Rene Descartes united algebra and geometry by showing that 
shapes could be expressed as equations. The fundamental theo
rem of calculus derived from the work of Isaac Newton and 
Gottfried Leibniz related the boundaries of geometric objects 
to properties of their interiors. Georg Cantor demonstrated the 
existence of different kinds of infinities by examining bounded 
intervals on a number line. When students grasp these profound 
insights for the first time, the frustrations and difficulties of 
learning mathematics can fall away. They sense a kind of intelli
gence at work beneath the buzzing confusion of everyday life. 
The world makes sense: it can be described mathematically. 

Mathematical connections were the centerpiece of Wiles's 
work on Fermat's last theorem. By the mid-1980s only amateurs 
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and crackpots were spending much time on the problem. "Fer-
mat's last theorem was viewed as a curiosity," says Ken Ribet, 
a mathematician at Berkeley whose office is just upstairs from 
Stankova's. "From the viewpoint of modern mathematics, it had 
no special interest aside from its long history. It was impossible 
to say why a person should be interested in that equation as op
posed to any other. It didn't seem to have any connection to any
thing else." 

Then an unexpected mathematical connection suddenly 
brought the theorem back into play. In 1955 the Japanese mathe
matician Yutaka Taniyama proposed that a deep and mysterious 
link existed between two distinct areas of modern mathematics. 
One area involves elliptic curves, which are mathematical objects 
described by a particular kind of equation. The other area in
volves modular forms, which are sets of functions that exhibit 
certain symmetric properties. No one before Taniyama would 
have guessed that elliptic curves are necessarily related to modu
lar forms. But he proposed that the two subjects were flip sides of 
the same coin. He said that every rational elliptic curve with ra
tional coefficients has a corresponding modular form, and vice 
versa. 

This conjecture, which was made more precise by Tani
yama's friend and colleague Goro Shimura, shocked mathemati
cians. It meant that someone working on a problem involving 
elliptic curves could instead investigate a comparable problem 
involving modular forms. A problem that was very difficult in 
one field could be translated into the other, where a solution 
might be much easier. Mathematicians quickly realized that the 
Taniyama-Shimura conjecture was an extremely powerful math
ematical tool. They therefore began to use it even though it had 
not been proved. That is, they would begin a proof by saying, 
"Assume that the Taniyama-Shimura conjecture is true. In that 
case, the following very interesting results can be demonstrated." 
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But there was a problem. Mathematicians soon realized that 
proving the Taniyama-Shimura conjecture would be extremely 
difficult. It would require new mathematical ideas and tools that 
were unlikely to be developed anytime soon. And without a 
proof of the conjecture, any results built on it would inevitably 
be suspect. 

In 1985 the German mathematician Gerhard Frey dropped 
another bombshell, pointing out that if the Taniyama-Shimura 
conjecture could be proved, it also would imply Fermat's last the
orem. Here's why. If the equation x" + y" - z" in fact did have a 
whole-number solution for n greater than 2, that solution could 
be converted into a bizarre elliptic curve that almost certainly did 
not have a corresponding modular form. So Fermat's last theo
rem could be proved by contradiction. If every elliptic curve with 
rational coefficients has a modular form, as Taniyama proposed, 
then a set of whole numbers satisfying x" + y" = z" could not ex
ist and Fermat's last theorem would have to be true. 

Frey came up with the idea, but he could not conclusively 
prove the connection between the Taniyama-Shimura conjecture 
and Fermat's last theorem. That task was accomplished by Ken 
Ribet, who wrote his proof in 1986-87. When Wiles heard about 
Ribet's proof, he immediately realized that his childhood dream 
was again within reach. If he could prove the Taniyama-Shimura 
conjecture, he would automatically have proven Fermat's last 
theorem. 

By this time Wiles was a well-known mathematician. Now 
he realized that if he wanted to prove Fermat's last theorem, 
he had to make a break with his professional past. He decided 
not to tell his colleagues at Princeton that he was working on 
the Taniyama-Shimura conjecture. Most of them would have 
thought the effort futile, and he didn't want to be discouraged 
by their pessimism. Undoubtedly he also had his eyes on the his
tory books. He knew that whoever solved Fermat's last theorem 
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would be remembered for as long as the world has mathemati
cians. He didn't want to do most of the work on a proof only to 
have someone swoop in at the last moment and steal it away 
from him. 

Throughout the latter part of the 1980s and the early 1990s, 
Wiles continued to work on his proof and teach classes at Prince
ton. But he quit attending most mathematics meetings. Occa
sionally he published a paper on a minor topic to show that he 
was still doing research. Many of his colleagues probably figured 
he had burned out and would no longer make any important 
contributions to mathematics. 

In early 1993 Wiles thought that he had succeeded. He had 
combined a wide range of extremely advanced mathematical 
techniques to prove a particular part of the Taniyama-Shimura 
conjecture, which was enough to prove Fermat's last theorem. 
He finally decided that he was ready to tell the world about his 
work. At a mathematical meeting in Cambridge, England, Wiles 
sprang the news on his unsuspecting colleagues. The announce
ment generated worldwide headlines. He was featured in People 
magazine, interviewed on C N N , and even asked to advertise a 
line of clothes. 

But before he could publish his proof in a mathematical 
journal, it had to be checked by other mathematicians. The 
manuscript of his proof was sent to six number-theory experts, 
who promised not to reveal the contents of the proof until it was 
published. Within a few weeks the reviewers uncovered a flaw: 
one of the techniques Wiles had developed to prove the conjec
ture had a gap. Unless the gap could be filled, the proof would 
fail. 

Now the stakes were extremely high. Wiles had revealed his 
dreams to the world, yet he appeared to have fallen short. He 
worked month after month on the gap but made little progress. 
In the show the Olympians watched, Wiles said, "After there was 
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a problem with [the proof], there were dozens, hundreds, thou
sands of people who wanted to distract me. Doing mathematics 
in that kind of rather overexposed way is certainly not my style, 
and I didn't at all enjoy this very public way of doing it." 

By early 1994 Wiles was in despair. He saw no way to fill the 
gap in his proof, and other mathematicians were clamoring for 
him to publish the details of everything he had done up to that 
point so they could get to work on the problem. Finally Wiles de
cided that he needed help, so he asked Richard Taylor, a young 
mathematician at Cambridge University, to work on the proof 
with him. Even together, the two made little progress. In his 
book Fermat's Enigma, Simon Singh has a particularly evocative 
description of this period. "Having ventured farther than ever 
before and failing over and over again, they both realized that 
they were in the heart of an unimaginably vast labyrinth. Their 
deepest fear was that the labyrinth was infinite and without exit, 
and that they would be doomed to wander aimlessly and end
lessly." 

Toward the end of that summer, Wiles was ready to tell Tay
lor that they should admit defeat. More than a year had passed 
since his Cambridge announcement, and he and Taylor were 
making no progress on the gap. Maybe he should just publish the 
flawed proof so that someone else could figure out how to fix it. 
But Taylor argued that they should work together for another 
month, until the end of September, and then move on. 

Wiles decided to use part of that time to examine the 
method he had used in the original proof. Why had the method 
turned out to be flawed? Suddenly, on that fateful morning in 
September, he realized how to fix the problem. He could draw on 
an earlier method he had abandoned as insufficient. Neither 
method alone was enough to do the job, but the two comple
mented each other perfectly. Immediately Wiles knew that the 
proof was complete. Every elliptic curve he was studying had 
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a corresponding modular form. He had proved Fermat's last the
orem. 

V 
The Taniyama-Shimura conjecture is part of a much larger, al
most metaphysical effort to unify much of modern mathematics. 
In the 1960s Robert Langlands of the Institute for Advanced 
Study in Princeton proposed that many areas of mathematics are 
linked in the same way that elliptic curves and modular forms are 
linked. These linkages, if they can be demonstrated, would have 
wide-ranging implications. As with the Taniyama-Shimura con
jecture, they would enable mathematicians to move a problem 
from one mathematical domain to another, where it might be 
more easily solved. More generally, these linkages would demon
strate a profound interconnectedness in mathematics, as if some
thing (some people might say someone) was making the pieces fit 
together. 

"The various branches of mathematics are all intercon
nected," says Berkeley's Ribet. "Mathematicians work on very 
narrow problems. They bang their heads against the wall, trying 
to answer some small question. But when they step back and 
look at what people are doing in other areas of mathematics, 
they often find that people are using similar tools, similar meth
ods, similar philosophies. . . . The main thing that mathemati
cians try to do is to understand some situation, which basically 
means bringing order to it. When the understanding involves a 
bridge of some sort between parts of mathematics that are gener
ally thought to be far from each other, this is always an exciting 
and unexpected development." 

No one understands exactly why the various branches of 
mathematics are linked. Perhaps the links reflect a deeper under
lying logic that mathematicians have only begun to grasp. Per
haps mathematics will someday be conducted on a different level 
that will subsume all of today's mathematics. But how would 
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that explain another striking aspect of modern research: the 
emergence of deep and fundamental connections between math
ematics and the functioning of the natural world? "Miraculous 
connections have been emerging," says Harvard professor Ar
thur Jaffe. "Ideas from theoretic physics are providing bridges 
to different areas of mathematics. These bridges provide in
sights so far-ranging that we don't understand where they come 
from." 

At the time of the Olympiad, Jaffe was president of the Clay 
Mathematics Institute, which was established by the mutual 
funds magnate Landon Clay to promote mathematical research. 
At the beginning of the year 2000, the institute announced that it 
would award prizes of $1 million each for solutions to seven 
"Millennium Problems" — problems so difficult that they have 
remained unsolved for decades or centuries. All seven prob
lems feature connections among different areas of mathematics 
and among mathematics, science, and engineering. The Riemann 
hypothesis has connections to encryption techniques and to 
an area of physics known as quantum chaos. Yang-Mills the
ory relates the mathematics used to study fundamental parti
cles with the mass of those particles. The P versus NP prob
lem indicates whether certain computations can be performed 
with a computer. Solutions to the Navier-Stokes equations would 
help engineers design objects that flow more efficiently through 
fluids. 

The Millennium Problems are perfect examples of math's 
connectedness and mystery. Mathematicians working on their 
own little tasks often stumble across a connection to one of the 
Millennium Problems, as if they had followed a random path 
through the woods that opened onto the end of a rainbow. 
"Mathematics is a big whole," Jaffe says. "If you're original, 
creative, and broad-minded, eventually you'll end up in every 
subfield of mathematics, and the work you're doing will have an 
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influence throughout mathematics. It makes it hard to be a math
ematician, because you have to be a student for your entire life." 

V 
Many mathematicians have two sides to their personality. The 
objects that they manipulate in their minds are the products of 
reason and logic. Yet mathematicians are often intensely emo
tional people. Many fall in love with the subject and never lose 
their passion for it. " I don't do mathematics because it's impor
tant," Gabriel once told an interviewer. " I do it for aesthetic rea
sons. Math is an art." 

Andrew Wiles would agree. At the moment when he 
achieved his breakthrough, he did not reflect on the acclaim his 
work would bring. He was struck by the beauty of what he had 
done. "It was the most — the most important moment of my 
working life. Nothing I ever do again will — I'm sorry. It was so 
indescribably beautiful; it was so simple and so elegant. I just 
stared in disbelief." 
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Results 





ID- triumph 

The health club at the Embassy Suites hotel in Washington, D . C . , 
is separated from the second-floor corridor by a wall of glass. As 
people staying at the hotel walk down the corridor, they can't 
help but glance through the window at the sweaty exercisers 
perched on their Lifecycles and StairMasters on the other side. 
The same incongruity applies inside the health club; as its pa
trons are straining at the Cybex machines, a steady stream of ho
tel guests — showered, well dressed, hurrying to their destina
tions — is forever passing by. 

Two days after the conclusion of the exam at the Forty-sec
ond Olympiad, a quite different spectacle began to take shape 
outside the health club's glass wall. Every few minutes a dishev
eled, worried-looking man appeared and added a piece of paper 
to the other papers taped to the glass. Immediately a dozen other 
disheveled, worried-looking men clustered around and studied 
the paper intently, some taking notes on pads in their hands. A 
member of the health club who was skilled at mirror writing 
could peer through the papers and see that each was headed by 
the name of a country — Ecuador, Israel, China. Other than that 
the papers bore only meaningless columns of numbers. 

To the coaches on the other side of the glass, those numbers 
were anything but meaningless. They were the scores each team 
member had achieved on the six Olympiad problems. These 
scores would determine which Olympians received gold, silver, 
and bronze medals; which countries had reasons to celebrate or 
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despair; which team could claim bragging rights as the strongest 
group of young mathematicians in the world. They were judg
ments from on high, as stark and unforgiving as the solid black 
type in which they were written. 

V 
Because mathematics at this level is as much an aesthetic as an in
tellectual endeavor, the judging of the Olympiad is both objective 
and subjective — more like judging a figure skating competition 
than like grading a multiple choice test. The scores for each prob
lem can range from 0, for no substantive progress made, to 7, for 
a correct solution. The scores from 1 to 6 are the tricky ones. The 
contestants may receive 1 or 2 points if they made some progress 
on a problem but remained far from a solution, 3 or 4 points if 
they got about halfway there, or 5 or 6 points if they were just a 
few steps from the answer. Where on that scale each Olympian's 
solution falls is a matter of judgment. 

The scores are decided by panels of mathematicians known 
as coordinators. The coaches and assistant coaches appear be
fore the coordinators and discuss each of their team members' 
solutions. The coaches and coordinators then try to agree on a 
fair score. " I think of this as a sort of legal proceeding," says 
Kiran Kedlaya, the assistant chief coordinator at the Forty-sec
ond Olympiad and a member of the 1990, 1991, and 1992 U.S. 
teams. "The student is the client, and the coordinators are the 
judge and jury. The coaches are the students' lawyers, and they 
argue the case." 

Coaches take different approaches to the process, from 
mild to fiery. "Some coaches let the papers speak for them
selves," says Kedlaya. "The leader from China is famous for this. 
He doesn't engage in much advocacy. He just says what's there. 
Other coaches try to present the solutions as favorably as possi
ble. Some are a lot more aggressive than others. You might even 
use the word 'obstinate' in some cases." 

On the spectrum from easygoing to obstinate, Titu 
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Andreescu definitely leaned toward the latter. He believed that 
his job was to make sure his students received every point they 
deserved to receive. After the exam he and the assistant coaches 
grilled the team members to figure out how to squeeze every pos
sible point from an answer. "He's not the most aggressive," says 
Kedlaya. "But no one ever accused him of not presenting his stu
dents' papers in the best possible light." 

In the early stages of the coordination, Titu's strategy ap
peared to be paying off. The scores for the teams tend to be re
ported in order, from the first problem to the last, though ap
peals and other controversies invariably confuse the process. On 
problem one the U.S. team got five 7s and just one 6. That sur
prised the team members. All had solved the problem, but several 
thought that slight errors in the logic of their proofs would cost 
them points. Titu and the other U.S. coaches must have been able 
to convince the coordinators that the errors were not serious 
enough to warrant subtractions. 

But other teams also were doing well. The Koreans' boast
ing at lunch after the first day seemed justified. They scored 
straight 7s on problems one and two, whereas the U.S. scores fell 
off slightly on problem two. The Chinese team also appeared to 
be doing extremely well, with one 4 and eleven 7s on problems 
one and two. 

But on the much harder problem three, the Koreans faltered, 
getting just four Is , a 2, and a 3. The United States, in contrast, 
got perfect scores for Reid's and Gabriel's solutions and partial 
credit for the others. It began to seem that the U.S. team might 
emerge with the highest team score of all for the first day, and if 
they did that, they knew they had a chance to win the competi
tion. But then the Chinese scores for problem three came up — 
three 7s, a 2, and two Os. Of the 126 points possible on the first 
day, the Chinese had scored 104, compared to the Americans' 
100. 

V 
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The prowess of the Chinese team — at the time of the Forty-sec
ond Olympiad, China had finished with the top score in three of 
the previous four years — is a popular topic of speculation at the 
Olympiad. The size of China's population is one often-heard ex
planation. If outstanding mathematical talent arises randomly at 
very low frequencies, then countries with the largest populations 
should have the largest number of skilled mathematicians. But 
this formula doesn't work very well for Olympiads. Brazil, the 
world's fifth-largest country in terms of population, generally 
does well at the Olympiad, but its team is not usually among the 
top finishers. In contrast, small countries with strong mathemati
cal traditions, like Bulgaria and Korea, often do much better 
than their size would suggest. 

A much more important factor is an educational system that 
gets children interested in math and then identifies those who are 
doing well. By these measures China excels. Mathematics teach
ers in China do not necessarily have more training than U.S. 
teachers. But they tend to be specialists, teaching only mathemat
ics, and they study their craft hard. U.S. elementary school teach
ers, in contrast, typically teach all subjects — and math is a sub
ject that makes many of them uncomfortable. 

In the United States the usual way for children in middle 
school to become interested in math competitions is through 
Mathcounts. But if teachers don't know about Mathcounts and 
don't build on a student's interest in math, many potentially 
strong competitors never get started. 

In China, far more teachers are interested in math competi
tions and are able to do the math associated with them. In es
sence China has a network of coaches throughout the country 
who identify and help train mathematically talented students. 
Every year more than 10 million Chinese students participate in 
a math competition, compared to the half-million or so Ameri
can students who take an A M C exam. According to Zuming 
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Feng, who grew up in China before immigrating to the United 
States, " In China they have teachers in many high schools who 
are as devoted to competitions as Titu and I are. That is what we 
would need to be that strong." 

Mathematical ability also figures prominently in China's 
college entrance exam, which features three to five mathematical 
problems structured as proofs. Chinese students therefore have a 
strong incentive to learn how to do Olympiad-style problems. 

Finally, the Chinese Olympians' training is as rigorous as 
any in the world. Though they do not attend a summer training 
camp, the team members are selected through at least ten Olym
piad-level tests designed to toughen them up for the competition. 

" I follow sports," Titu once said when asked why the Chi
nese team is so good, "and there was this Ping-Pong player from 
China who won the world championship, but nobody had ever 
heard of him. The reporters came up to him afterward and asked, 
'How was this world championship?' And he said, 'It was easy. 
The hard part was making the Chinese team.'" 

V 
As the scores for the second day began to be posted, it quickly 
became clear that no team was going to be able to catch the 
Chinese. They scored straight 7s on problems four and five and 
five 7s on problem six — an incredible second-day performance. 
China had won its third straight Olympiad. The informal contest 
among countries was now for second and third place. And for 
the individual competitors the question remained: who would 
win gold, silver, and bronze medals? 

Medals at the Olympiad are awarded strictly on the basis of 
scores. The top twelfth of the finishers get gold medals; the next 
sixth receive silvers; the next quarter, bronzes. Thus, about half 
of the Olympians return home with medals. 

At the Forty-second Olympiad everyone who scored more 
than 10 points — out of a total of 42 possible — received a 
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medal. That's how difficult the problems were. Some competitors 
returned home without scoring a single point, despite being the 
best high school mathematicians in their countries. 

Four of the 473 competitors received perfect scores — they 
solved all six problems correctly. Two of those four were on the 
U.S. team. Reid Barton and Gabriel Carroll both knew that they 
had aced the exam. After the test each day, when asked how they 
had done, they answered, " I got them al l . " Throughout the event 
they exuded a quiet confidence that both intimidated and in
spired their teammates. They were seniors competing in their 
fourth and third Olympiad, respectively. They knew they would 
do well. 

But no one expected them to do this well. A perfect score in 
an Olympiad is the Mount Everest of mathematical competi
tions. And for Reid Barton, in particular, his straight 7s were the 
culmination of the most storied run in Olympiad history. He had 
received a gold medal after his freshman year, his sophomore 
year, his junior year, and now his senior year. No other competi
tor from any country in the forty-two years of the Olympiad had 
ever won four straight gold medals. 

The two other perfect scores were achieved by Liang Xiao 
and Zhiqiang Zhang of China. Mihai Manea of Romania scored 
41 points — faltering only on problem three — and Sergey Spiri-
donov of Russia scored 39. No one else achieved a score higher 
than 37. The highest-scoring girl — Greta Panova of Bulgaria, 
who finished higher than all but nine people in the competition 
— received a 36. 

V 
Titu has never spoken with anyone about the judging, and he re
fuses to do so to this day. He would prefer that the following 
story remain private. But enough people were present in the 
judging rooms that the story can be reconstructed, and it was a 
pivotal moment in the Forty-second International Mathematical 
Olympiad. 
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The final problem to be scored was problem six, and the 
final U.S. solution to be scored was Tiankai's. "His solution was 
brilliant, but he didn't finish it," says Zvezda Stankova. Problem 
six was the number-theory problem involving four numbers la
beled a, b, c, and d. The competitors were told that the num
bers solved a particular equation, and their task was to prove 
that ab + cd was not a prime number. The problem can be 
solved in various ways. Both Gabriel and Reid used imaginary 
numbers, which enabled the expression ab + cd to be factored in 
such a way that it could not be prime. An algebraic approach 
used a proof by contradiction. An especially ingenious geometric 
proof began by setting the numbers a, b, c, and d equal to the 
lengths of a four-sided polygon. But all the solutions were very 
difficult. Of the 473 competitors at the Olympiad, only about 
twenty solved problem six. 

Tiankai's approach was different from everyone else's. He 
expressed the four numbers a, b, c, and d in terms of four other 
numbers, which he called /', k, m, and n. He then set out to prove 
that these new numbers, if multiplied together, yielded a non-
prime product, which in turn implied that ab + cd could not 
be prime. His approach would have worked if he had had more 
time. But the air horn blew before he could complete his calcula
tions. 

Clearly, he did not deserve to score a 7, because he had not 
solved the problem. The question was whether he deserved a 4, a 
5, or a 6. For the U.S. team the panel of coordinators who would 
judge problem six consisted of the Bulgarian coaches. Stankova, 
who had the distinct advantage of being able to argue with the 
coordinators in Bulgarian rather than in translated English, pre
sented Tiankai's case. The tide swept back and forth, with near 
agreements on 4 points, then on 6, and finally on 5. It seemed the 
fairest score, though a strong argument could be made that the 
brilliance of Tiankai's unusual approach deserved a 6. 

Stankova agreed with the 5, but she was only an assistant 
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coach. Titu would have to approve the score before it would be 
final. Titu, meanwhile, had been calculating the collective scores 
for the teams. He knew that if Tiankai was awarded a 5, the U.S. 
team would tie with Russia for second place, with 196 points. 
If Tiankai received a 6, the United States would beat Russia by 
one point. Furthermore, a 6 would guarantee a gold medal for 
Tiankai. And if Tiankai received a gold medal in his freshman 
year, he would be in a position to become only the second Olym
pian in history, after Reid Barton, to win four consecutive gold 
medals. 

Stankova and the coordinators presented Titu with the 
agreed-on score of 5. Titu knew that if he insisted on having it re
visited, he might get a 6. But the coordination was running late, 
the awards ceremony was the next day, and at that moment a tie 
with Russia seemed the best possible outcome. "Five's fine," Titu 
said. And with those words the scoring of the Forty-second 
Olympiad was over. 

V 
The awards ceremony was held the next day in the opera hall of 
the Kennedy Center for the Performing Arts, which is on the 
northern shore of the Potomac River between the Watergate 
apartments and the Lincoln Memorial. The ceremony was 
funded largely by the Clay Mathematics Institute, and short ver
sions of the Millennium Problems were projected on a huge 
screen behind the speakers. Flags from the eighty-three countries 
represented at the Olympiad ringed the stage. Before the cere
mony the musical theme of the Olympic Games filled the hall. 

As coaches, parents, and teammates cheered from the balco
nies, the gold, silver, and bronze medalists trooped down the 
aisles and onto the stage. They bent their heads, and Andrew 
Wiles placed the medals around their necks. He looked slight and 
retiring, as he often does in public. But when he spoke to the hun
dreds of people in the audience, his voice did not waver. "Let me 
congratulate you all , " he began. "Some have arrived here by 
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overcoming immense personal difficulties, others have arrived 
here overcoming only immense mathematical difficulties, but all 
of you have shown great talent and a real capacity for tremen
dous hard work." 

In his talk Wiles described an ancient mathematical prob
lem involving right triangles whose sides have rational lengths. 
Some such triangles have areas that are equal to whole numbers, 
whereas others don't. No one has yet been able to prove which 
whole numbers are associated with such triangles and which 
aren't. Whoever produces such a proof will be well on the way 
to solving the Millennium Problem called the Birch and Swin-
nerton-Dyer conjecture and earning $1 million. 

Then Wiles offered some advice to the Olympians. He en
couraged them to consider careers in mathematics but cautioned 
that solving Olympiad problems is not like doing mathematical 
research and is not necessarily the best training for research. 
Working at the mathematical frontiers is more like a marathon 
than a sprint. Problems can take many years to solve, and you 
never know for sure whether you're going to reach the finish line. 
"The transition from a sprint to a marathon requires a new kind 
of stamina and a profoundly different test of character," he said. 
"We admire someone who can win a gold medal in four suc
cessive Olympic Games, not so much for the raw talent as for 
the strength of will and determination to pursue a goal over 
such a sustained period of time. Real mathematical theorems 
will require the same stamina whether you measure the effort in 
months or in years. You can forget the idea, if you ever had it, 
that all you require is a bit of natural genius and that then you 
can wait for inspiration to strike. There is simply no substitute 
for hard work and perseverance." 

V 
So what about the question of genius, which is where this book 
began? Are the workings of the Olympians' minds incomprehen
sible, meaning that we must ascribe their insights to divine inspi-
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ration? Or is their problem solving a logical extension of the 
thinking people do every day? 

One important observation is that the Olympians always 
had a reason for doing what they did, even when they let their 
minds wander. They never blundered about wildly until they 
happened across an approach that would work. They knew 
where they needed to go, and they moved forward based on past 
successes. 

Sometimes their progress depended on their ability to com
bine separate skills. They might have blended deep intuition with 
rigorous logic, or they might have applied an old technique in a 
new context. But even when they combined two or more ele
ments in a solution, those elements were not exotic or unknow
able; the Olympians used tools familiar to everyone. In that re
spect their actions were not at all inexplicable. 

Examining what they did, however, yields only part of the 
answer. At a deeper and more fundamental level, a profound 
mystery does remain. How could the Olympians see an image in 
their minds with such clarity that it became real? How did they 
know the best way to dissect a problem so that its constituent 
pieces suggested a solution? Why were they able to persevere 
with approaches that others would consider hopeless, until fi
nally a solution emerged? 

These mysteries are not confined to the solving of difficult 
mathematical problems. They are familiar mysteries — the kinds 
of questions people ask all the time. How do we construct order 
out of chaos? How do our minds create something that has never 
existed before? Why do some things attract our interest while 
others leave us cold? The achievements of the Olympians do not 
necessarily derive from obscure mental abstractions. They re
volve around the much more immediate and pragmatic consider
ations of how humans make sense of the world. 

In that respect, the genius we sometimes sense in the Olym-
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pians is not something mysterious and unknowable; it is present 
in everyone in some form. When we perceive the order in an 
abstract painting, we do not ask what makes that perception 
possible. When we pursue a task with dedication and purpose, 
we do not stop to question our motivations. When we walk 
down a wooded path and sense, just for a moment, how amazing 
it is to live in this world of trees and sky and rich brown earth, we 
are experiencing the same emotions mathematicians feel when 
they discover something they never knew was there. 

Maybe that's why the idea of genius appeals to us so 
strongly — because it partakes of a mystery with which we all 
are familiar. The sense of mystery may resonate in us most deeply 
when we are admiring creative works of great beauty and power. 
But the emotions evoked by these great achievements are not for
eign to any of us. On the contrary, we feel those emotions be
cause great achievements spring from abilities that we all, in our 
own way, share. 

V 
After the awards ceremony was over, the Olympians spilled from 
the Kennedy Center's concourse onto a terrace overlooking the 
Potomac River. It was a pleasant Friday afternoon, and the water 
was thronged with pleasure boats. An eight-man shell passed si
lently along the river like a water strider on a pond. Several mili
tary helicopters flew upriver, carrying the president to Camp Da
vid for the weekend. A few minutes later a steady stream of jets 
resumed their downriver approaches to National Airport. 

The Olympians and their coaches milled about in groups, 
having their pictures taken, showing each other their medals. 
Some asked for an autograph from Andrew Wiles, who stood on 
the edge of the gathering. Others were saying goodbye to their 
guides, since this was the moment when, after ten straight days, 
the guides and their teams had to separate. 

The next day the Olympians would board planes to go 
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home. They would return to noisy celebrations and to indiffer
ence, to happy families and to turmoil, to repressive regimes and 
to peaceful democracies, to fulfilling careers and to disappoint
ments. But for this moment they were united in their achieve
ment. They had competed in the Forty-second International 
Mathematical Olympiad. No one could ever take that away from 
them. 



11- epilogue 

After the Olympiad, Melanie Wood returned for her third year at 
Duke University in Durham, North Carolina. She had already 
decided to major in math, and her upper-level classes consumed 
much of her time. But she stayed in touch with a wide circle of 
friends and spoke whenever she could to groups of girls inter
ested in math. Following her senior year she became a Gates 
Scholar and traveled to Cambridge, England, to study math for 
a year, after which she planned to attend graduate school at 
Princeton. 

In 2003 coach Titu Andreescu decided that it was time to do 
something new. He applied for several academic positions and 
took a job at the University of Wisconsin at Whitewater while 
serving on the 2003 Olympiad advisory board and on the prob
lem selection and judging committees. Zuming Feng, the assis
tant coach at the Forty-second Olympiad, was team leader at the 
2003 Olympiad in Tokyo. 

Tiankai Liu earned a gold medal at the Olympiad in Glas
gow in 2002. But the summer after his junior year he decided to 
skip the Olympiad in Tokyo. Instead he attended the Research 
Summer Institute at MIT, which is a common steppingstone for 
rising high school seniors who hope to be finalists in the Intel Sci
ence Talent Search, the prestigious national science fair that has 
launched the careers of many prominent scientists. For now, 
Reid Barton's record of four straight gold medals is safe. 
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Ian Le entered Harvard College the fall after the Olympiad. 
A math major, he remained active in music and began taking pri
vate piano lessons again. 

David Shin entered MIT, where he began working on a dou
ble major in mathematics and computer science. In his junior 
year, having continued to play jazz piano throughout college, he 
decided to minor in music as well. 

Oaz Nir joined Melanie at Duke. Like David, he declared a 
double major, but in mathematics and English. " I think I'll go to 
graduate school," he said, "but I don't know in what." 

Reid Barton entered M I T the fall after the Olympiad. That 
December he participated in the William Lowell Putnam compe
tition, the premier mathematics competition for college students 
in the United States and Canada. He was one of the top five 
finishers (individual positions among the top five are not an
nounced), and the team from M I T finished second only to Har
vard. 

Gabriel Carroll was on Harvard's Putnam team as a college 
freshman and was also among the top five individual scorers on 
the test. Over the course of his first year at Harvard, his Web site 
continued to grow. "Was it a significant year?" he wrote in the 
spring. "Time alone will tell. . . . I could not possibly have pre
dicted four years ago, or two years ago, or even one year or six 
months ago what my life would look like now; changes are inces
sant and to a large extent random. So I simply acknowledge this 
and wait to see." 



appendix 
Solutions and Commentaries 

O D D S , E V E N S , AND S Q U A R E S ( C H A P T E R 1) 

The problem on page 35 — how many of the integers between 1 
and 1,000, inclusive, can be expressed as the difference of the 
squares of two nonnegative integers — appeared on the 1997 
American Invitational Mathematics Examination (AIME). 

In mathematical terms, if x is a whole number between 1 
and 1,000 (inclusive), can we find two other whole numbers — 
let's call them a and b — such that x = a2 — b2? 

The odd numbers are easier to account for than the even 
numbers. If x is an odd number, it can be written as 2M + 1 for 
some whole number n. (Thus, if x is 7, n is 3.) Now consider the 
number (n + l ) 2 , which is equal to (n + l)(n + 1), or n 2 + In + 
1. We can use that equation to express 2n + 1 in a different way. 
We can write In + 1 = n 2 + In + 1 - n 2 = (« + l ) 2 - n 2 . But In 
+ 1 is equal to x, so if we let n + 1 = a and n = b, then x = a1 — 
b2. This proves that all the odd numbers from 1 to 1,000 (in fact, 
all odd numbers to infinity) can be expressed as the difference be
tween two squares. Most problem solvers recognize this right 
away because they know that the square numbers (1,4, 9,16 . . . ) 
are separated by successive odd numbers. 

The even numbers are a bit tougher. First, any good high 
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school math competitor knows that a1 — b2 = [a + b)(a — b). 
Now think what happens when a and b are both even, both odd, 
or one of each. If they are both even, then (a + b) and (a — b) are 
both even, and (a + b)(a — b) is also even. If they are both odd, 
then (a + b) and (a — b) are still both even, as is their product. If 
one number is odd and the other is even, then both (a + b) and 
(a — b) are odd, and so is (a + b)(a — b). We can ignore this op
tion, because we've already taken care of the odd numbers. 

Any product of two even numbers has to be divisible by 4 
without leaving a remainder. (Some experimenting will demon
strate this fact. Technically, it occurs because the product will 
have at least two 2s in its prime factorization.) But the even num
bers that cannot be evenly divided by 4 — 2, 6,10, and so on — 
cannot be expressed as the product of two even numbers. These 
numbers therefore cannot be expressed in the form (a + b) 
(a — b), which also means that they cannot be expressed as the 
difference of two squares. 

But is the converse — that all the even numbers divisible by 
4 (that is, 4, 8, 12, and so on) can be expressed as the difference 
of two squares — necessarily true? Yes, because if x is a multiple 
of 4, it equals 4n for some number n. But 4n can also be written 
a s ( n + l ) 2 - (n - l ) 2 . S o if a = (n + 1), b = (n - l ) , a n d x = 4n, 
then x = a2 — b2. 

What this proof shows is that half of all the even numbers 
(those divisible by 4) can be expressed as the difference between 
two squares. The first 1,000 whole numbers contain 500 even 
numbers. So half of those numbers, plus all the odd numbers, can 
be expressed as the difference between two squares, and the an
swer to the problem is 750. 

By the way, this problem was the first and easiest on the 
1997 A I M E . The other fourteen problems on the three-hour test 
were appreciably harder. 
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A M A T H E M A T I C A L C H E S T N U T ( C H A P T E R 2) 

Explaining the humor of a mathematical joke is as graceless as 
explaining any other joke, but here goes: People who took calcu
lus in high school or college often forget that when an expression 
like x2 is integrated, the answer technically includes a constant of 
integration. The waitress in Gabriel's story knew calculus so well 
that she improved on the answer she was given by the mathema
tician. 

P R O B L E M O N E — A P R O O F BY C O N T R A D I C T I O N 

( C H A P T E R 3) 

Tiankai's proof by contradiction in his solution to problem one 
was a marvel of mathematical concision. He had already shown 
that angle PAO in the following diagram is equal to or greater 
than 30 degrees. Now he had to use that information to figure 
out where point P is located between points C and M . If he could 
prove that point P is closer to C than it is to M , it would follow 
that angle C A B plus angle C O P is less than 90 degrees, which is 
what he had to prove. 

First he assumed the opposite. He said, "Let's assume that P 
is closer to M than it is to C . " But P M is the same distance as X O 
in the diagram Tiankai drew, because X O M P is a rectangle. Also, 
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because Tiankai had demonstrated that angle PAO was at least 
30 degrees, he knew that the sides of triangle X A O are related in 
a particular way. In a 30-60-90-degree triangle, the shortest side 
is always half the length of the longest side. Therefore, X O was 
at least half the length of A O . And because A O is the radius of 
the circle, X O had to be at least half the radius of the circle. 

Now look at the distance C M . That distance has to be less 
than the radius of the circle, because C M is always less than C O . 
So if X O , which is equal to P M , is more than half the radius of 
the circle, and if C M is less than the radius of the circle, P has to 
be closer to C than to M . The assumption Tiankai had made had 
to be incorrect. 

There are other ways to prove this point, but the Olympians 
often used proofs by contradiction in their solutions to the prob
lems. 

P R O B L E M Two — J E N S E N ' S I N E Q U A L I T Y ( C H A P T E R 4) 

To solve problem two, Ian had to prove that 

a/^ja2 + 8bc + b/^jb1 + Sac + c/*Jc2 + 8ab > 1 

for any positive numbers a, b, and c. 
Alone among the members of the U.S. team, Ian realized 

that he could prove this using the mathematical equation known 
as Jensen's inequality. The inequality looks daunting but is not 
really that complicated. Here it is for three variables (in this 
equation, r + s + t has to equal 1): 

r f(x) + s f(y) + t f(z) > f(rx + sy + tz) 

The letters x, y, and z and r, s, and t stand for numbers. But 
the letter f, which is short for function, represents a mathemati
cal action in which one does something to the number repre-
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sented by x, y, or 2 (such as doubling or squaring it) to get an
other number. Jensen showed that the above inequality holds for 
functions that curve upward when plotted on graph paper. 

In his solution to problem two, Ian let the function, f, in 
Jensen's inequality be 

f(x) = l/V* 

The graph of this function curves upward, so Ian knew that the 
inequality would hold. He then had to define x, y, and z in the in
equality. That was fairly easy, given that he had already estab
lished that f would stand for taking the square root of a number 
and dividing 1 by the result. He set the x of Jensen's inequality to 
a2 + 8bc; y to b1 + Sac; and z to c2 + 8ab. That way, f(x) was 
equal to 

\/4a2 + 8bc 

and so on for y and z. So 

f(x) + f(y) + f{z) = l/Ja2 + 8bc +1 /4b2 + 8ac +1 /jc2 + 8ab 

Now Ian did something extremely clever. He set the num
bers r, s, and t in Jensen's inequality to be a/(a + b + c), b/(a + b 
+ c), and c/(a + b + c). If you put all those numbers into the in
equality and do some algebra, you come up with the following 
equation, which Ian jotted down on his scratch paper: 

a b c 
a+b + c + a+b + c + a+b + c > -Ja+b + c 

4a2 +8bc 4b2 + 8ac 4c2 +8ab ~ 4a3 +b3 +c3 +24abc 

The term a + b + c appears on both sides of the equation, so 
you can multiply both sides of the equation by that term to get 
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a b c ^(a+b + c)3 

— + — + — > v 

4 a2 +Sbc 4b1 + 8ac 4 c2 +8ab 4 a3 + b3 + c3 + 24abc 

Now the left-hand side of the equation is the same as the quantity 
specified in problem two. As described in Chapter 4, Ian easily 
demonstrated that the right-hand side of the equation had to be 
more than 1. Therefore the left-hand side of the equation also 
had to be more than 1, and his proof was complete. 

P R O B L E M T H R E E — T H E A X I O M OF C H O I C E ( C H A P T E R 5 ) 

Only one other writer attended the Forty-second Olympiad — a 
California freelancer named Dana Mackenzie, who has a Ph.D. 
in mathematics and was covering the event for Science magazine. 
A few days after the end of the Olympiad, he sent me the follow
ing e-mail message: 

I have one little story to tell you about [problem three]. The 
mathematical humor involved is a bit too subtle for my short 
article in Science, but it might give your readers some insight 
into what math students laugh about. 

As you already know, the first step in Reid's proof was to 
make a 21 x 21 table, listing the girls down the side and the 
boys across the top. For the entry in the ith row and ;th col
umn of the table, you choose "one" problem that was solved 
by both girl / and boy;'. When Reid explained his solution 
to me the first time, I didn't catch this subtle point, and I 
thought that he said to list "al l" of the problems that were 
solved by both girl i and boy /'. It was only a couple of days 
later, when I was writing the solution up for Science, that I 
realized that the last step of the proof doesn't work if you do 
it that way. 

Now I was panicking, because I had promised my editor 



a p p e n d i x 207 

to send him the solution to this problem! That's when I was 
saved by something that Gabriel [another team member] had 
said. After Reid had explained his solution to me, Gabe had 
razzed Reid for "using the Axiom of Choice 441 times." The 
Axiom of Choice, as you might know, is the statement that if 
you have any collection of sets (say, baskets of eggs), then 
you can talk about a set created by arbitrarily selecting one 
element from each set (that is, one egg from each basket). It 
sounds obvious, but historically there has been a lot of de
bate in the mathematical community over whether you can 
apply this axiom when you have an infinite number of sets. 
Some very strange paradoxes arise if you allow this. Most 
mathematicians do allow it, but a minority of mathemati
cians consider it to be an invalid procedure. Partly for this 
reason, even mathematicians who accept the "infinite" form 
of the Axiom of Choice view such proofs as slightly tainted. 
It's poor form to use it if you don't need to. 

Anyway, I did not understand Gabe's comment at the 
time, but two days later its meaning hit me. Gabe was refer
ring to the fact that Reid's proof depended on arbitrarily 
choosing one problem to write in each of the 441 cells in the 
table from the possibly several questions that the corre
sponding pair of students got right. And that was precisely 
what he needed to make the last step work. Now it all made 
sense! 

This episode was very impressive to me. First, I was 
amazed by Reid's insight in avoiding a trap that probably 
would have caught me, even if I had been clever enough to 
come up with the rest of the proof. Second, even as high 
school students, they've heard about the Axiom of Choice, 
and moreover they've absorbed the lore enough to know 
that mathematicians view it with some disfavor. That's why 
Gabe was razzing Reid. It's like saying, "Yeah, you won the 
race, but your shoelaces were untied." I'm sure Gabe knew 
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that using the Axiom of Choice wasn't a "real" objection to 
Reid's proof, but he was teasing him about it all the same be
cause it made Reid's proof seem a little less elegant. In reality, 
of course, Reid's proof is very elegant. 

P R O B L E M F O U R — T H E S U M OF A L L S U M S ( C H A P T E R 7) 

As with many of the other proofs on the Olympiad, David's 
proof for problem four proceeds by contradiction. The problem 
defines the sum 

in which the term a represents a distinct ordering of the first n 
whole numbers. There are n factorial, or «!, such permutations, 
so a can take n\ forms. The n numbers represented by c„ in which 
/ ranges from 1 to n, are simply integers. So S(a) represents a 
number, though it could be a very large one. 

To solve the problem, you have to prove that there exist dis
tinct permutations of the first n whole numbers (the problem 
calls these permutations b and c) such that n\ evenly divides S(b) 
— S(c) when n is an odd number. To produce a contradiction, you 
first assume that the statement you want to prove is false. So you 
assume that no permutations b and c exist such that n\ evenly di
vides S(b) — S(c). You then add up all the S(a)'s over the n\ per
mutations of a, which yields 

Through some fancy calculating, you can show that this 
sum cannot be evenly divided by n! if the assumption you made is 
correct. But you can also calculate the sum another way, and 
when you do that, you discover that the sum can be evenly di-
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vided by n\ when n is an odd number. Therefore the assumption 
that S(b) — S(c) could not be divided by n\ for some b and c when 
n is odd is incorrect, and the proof is done. 

P R O B L E M F I V E — T H E M Y S T E R I O U S C O N S T R U C T I O N 

( C H A P T E R 8 ) 

The following riff on Oaz's solution, which was developed by 
one of the Chinese Olympians, illustrates an extremely clever 
way to solve problem five, in which you have to calculate the an
gles of triangle A B C . You already know that angle A is 60 de
grees and that line AP bisects the angle. You also know that line 
BQ bisects angle B, with each half of the angle denoted by beta 
(/J). And you know that the lengths of various line segments meet 
the following condition: AB + BP = A Q + QB. And that's all 
you know. 

In this solution, you extend line AB to the point called R, 
and you make BR equal in length to BP. Using the condition 
stated in the problem that AB + BP = A Q + QB, you can prove 
(with some difficulty) that A R = A C . Now look at triangle BRP. 
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It's an isosceles triangle, with the big angle equal to 180 degrees 
- 2/3. Therefore angle BRP has to equal beta. But if angle BRP 
equals beta, then so does angle A C B , because line AP bisects an
gle A, which means that the two halves of the chevron formed by 
points A, R, P, and C are identical. If angle C equals beta, and an
gle B equals two times beta, then beta has to equal 40 degrees for 
the angles of triangle A B C to add to 180 degrees. 

It's a beautiful proof, but how would anyone know to ex
tend line AB to R, especially under the time pressures of an 
Olympiad? That's the mystery. 

P R O B L E M S I X — A N IMAGINARY FACTOR ( C H A P T E R 9) 

Gabriel's use of imaginary numbers in problem six was directly 
linked to the famous equation e"' = —1. The number omega {(JJ) 

is defined as a» = e2*"3. So a>2 = e271'13 x e27"13 = e2""3 + 2nU3 = e4""3 (be
cause the exponents of e can be added together when the two 
numbers are multiplied). By the same token, OJ3 = e6"'13 = e27" = e*' 
x e7" = - 1 x - 1 = 1. 

Thus the set of numbers 1, —1,(0, —w, a>2, and — o2 are re
lated in a particular way. If you multiply any two of them to
gether, you get another member of the set. Gabriel used the pow
erful properties of this group to crack problem six. 
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cussions of the origins of talent in The Dependent Gene: The Fallacy 
of "Nature vs. Nurture" (New York: Henry Holt, 2001). 

Reid Barton's solution to problem five is described in "Top 
Young Problem Solvers Vie for Quiet Glory," by Dana Mackenzie, 
Science 293 (2001): 596-99. 

http://www
http://twainquotes.com/archangels.html


s o u r c e s 221 

C H A P T E R 6. I N T E R L U D E 

The game Twitch is distributed by Wizards of the Coast, P.O. Box 
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mechanism for creativity in "Blind Variation and Selective Reten
tion in Creative Thought as in Other Knowledge Processes," Psy
chological Review 67 (1960): 380^00. 
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Simon Singh tells the story of Fermat's last theorem in Fermat's 
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93; and "New Heights for Number Theory," by Barry Cipra, What's 
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" A Cross-Cultural Analysis of Similarities and Differences Among 
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